Sub-dominant Oscillations in Atmospheric Neutrino Experiments

Some unavoidably incomplete and personal considerations

.... with Apologies to all of you

Paolo Lipari RCCN workshop Dec. 2004

Future Studies with Atmospheric Neutrinos

Neutrino Physics has entered the

"Precision Era"

"Common Wisdom" : From Natural Neutrinos to Reactor and LBL Accelerator Neutrinos

The scientific interest for Atmospheric Neutrinos is not exausted.

Two Directions of interest

Search for Non-Standard Effects (FCNC, VEP, ...)

O Contribution to Precision Parameter Determination

Fundamental Questions For Neutrino Oscillation Studies

Measurement of θ_{13}

Deviations of θ_{23} from Maximal Mixing

Mass Hierarchy (Sign of Δm_{23}^2)

 \square CP Violations (phase δ)

Can be Studied with Atmospheric Neutrinos Majorana phases

Absolute ν Masses

Standard Method

 $\sin^2 2\theta_{23}$

"New Method"

Standard Method

$$\frac{N_{\mu}}{N_{\mu}^{\circ}} \simeq 1 - \sin^2 2\theta_{23} \left< \text{Oscillation Phase} \right>$$

$$(Oscillation Phase)_{Down} \simeq 0$$

$$\langle \text{Oscillation Phase} \rangle_{\text{Up}} \simeq \frac{1}{2}$$

$$\sin^2 2\theta_{23} \simeq 2 \left(1 - \frac{\text{Up}}{\text{Down}} \right)$$

$$N_{\rm Up}^0 \simeq N_{\rm Down}^0 \simeq 5.7 \, (\text{Kton year})^{-1}$$

$$\delta(\sin^2 2\theta_{23})_{\text{stat}} \simeq \sqrt{\frac{3}{N_{\text{Down}}}} \simeq \frac{0.07}{\sqrt{\text{Exposure(SK1)}}}$$

Exposure = 50 SK1 $\delta(\sin^2 2\theta_{23})_{\text{stat}} \simeq 0.01$ $\delta(\sin^2 2\theta_{23})_{\text{syst}} \simeq 2 \delta\left(\frac{U^0}{D^0}\right)$

Systematic Error under control

OCTANT AMBIGUITY

 $\sin^2 2 \theta_{23}$

OCTANT AMBIGUITY

$$\sin^2 2\theta_{23} = 1 \pm 0.01$$
$$\sin^2 \theta_{23} = 0.5 \pm 0.05$$

$$\sin^2 2\theta_{23} = 0.96 \pm 0.01$$
$$\sin^2 \theta_{23} \in [0.4, 0.43] \oplus [0.57, 0.6]$$

Subdominant Solar Effects

Oscillations due to the Solar Parameters

$$N_e = N_e^0 + N_e^0 \langle P_2 \rangle (-1 + r \cos^2 \theta_{23})$$

Combination of Appearance and Disappearance

(Kton yr)⁻¹

Electron Rate

 $N_e = N_e^0 + N_e^0 \langle P_2 \rangle \ (-1 + r \ \cos^2 \theta_{23})$

 $N_e = N_e^0 + N_e^0 \langle P_2 \rangle (1 - 2 \sin^2 \theta_{23})$

$$N_e^{\rm SG} \simeq 29 + 2.3 \ (1 - 2 \sin^2 \theta_{23}) \ (\text{Kton yr})^{-1}$$

$$\sin^2 \theta_{23} \simeq \frac{N_e^0 (1 + \langle P_2 \rangle) - N_e}{2 \langle P_2 \rangle N_e^0}$$

Statistics

Control of Systematics

AN(Muons)

AN(Muons)

Three Important Contributions of SuperKamiokande

Okumura Measurement of θ_{13}

Nakayama

Deviations of θ_{23} from Maximal Mixing

Shiozawa

Large Exposure All effects Combined

Okumura Measurement of θ_{13}

Nakayama

Deviations of θ_{23} from Maximal Mixing

Shiozawa

Large Exposure All effects Combined

Shoei Nakayama

sub-GeV e-like zenith angle

Y: N_e (3 flavor) / N_e (2 flavor full-mixing)

Sub-GeV mu-like

P = 200 - 400 MeV P = 400 - 1330 MeV

Shoei Nakayama

Sub-GeV /e ratio (zenith angle dependence)

Shoei Nakayama

 χ^2 distribution as a function of $\sin^2 \theta_{23}$ where Δm^2_{23} is chosen to minimize χ^2

Shoei Nakayama

Sub-GeV Zenith Angle distribution

Sub-GeV

Sub-GeV /e Ratio Zenith Angle distribution

ANALYSIS of EFFECT of SYSTEMATIC ERRORS

True : $\sin^2 \theta_{23} = 0.4$

Test: 20 years of MC data $(\sin^2 \theta_{23} = 0.4,$ $\Delta m_{23}^2 = 2.5 \times 10^{-3} \text{ eV}^2)$

χ^2 contribution from sub-samples

determine the octant

Multi-GeV (and PC) determine the allowed interval

Okumura Measurement of θ_{13}

Nakayama

Deviations of θ_{23} from Maximal Mixing

Shiozawa

Large Exposure All effects Combined

 $\frac{\Delta m_{23}^2}{1} \simeq \sqrt{2} \, G_F \, N_e$ 2E $E_{\rm mantle} \simeq 7.5 \ {\rm GeV}$ $E_{\rm core} \simeq 2.5 \,\,{\rm GeV}$

θ_{13} Oscillations

1+multi-ring, e-like, 2.5 - 5 GeV

New Class of Events

List of systematic errors

Nuclear effect

Normal ($\Delta m^2 > 0$) or inverse ($\Delta m^2 < 0$) mass hierarchy ?

Matter effect is different btwn normal / inverse mass hierarchy:

	neutrino anti-neutri	
$\Delta m^2 > 0$	enhanced	suppressed
$\Delta m^2 < 0$	suppressed	enhanced

Basically, water Cherenkov detector cannot discriminate neutrino/antineutrino event-by-event basis, but small effect can be obtained in multi-GeV electron sample due to the difference of cross section, etc..

Normal vs Inverse hierarchy

Okumura Measurement of θ_{13}

Nakayama

Deviations of θ_{23} from Maximal Mixing

Shiozawa

Large Exposure All effects Combined Masato Shiozawa

Future Possibilities of Atmospheric Neutrino Experiments

20 years of SK (5 * SK-I) 80 years of SK (20 * SK-I)

All Oscillation Parameters 3 Well Measured by other experiments

3 to be determined 4 * 4 * 4 = 64 MC calculations

s ² 2 θ_{12} =0.825 s ² θ_{23} =0.4 ~ 0.6 s ² θ_{13} =0.04 δ cp=45° Δ m ² ₁₂ =8.3e-5 Δ m ² ₂₃ =2.5e-3		no osc. with 20yrs stat.error s ² ₂₃ =0.40 0.45 0.50 0.55 0.60
---	--	---

20 SK years

s²2 $θ_{12}$ =0.825 s² $θ_{23}$ =0.45 or 0.55 s² $θ_{13}$ =0.00~0.04 δcp=45° Δ m²₁₂=8.3e-5 Δ m²₂₃=2.5e-3

 $s^{2}\theta_{23} = 0.45 \text{ or } 0.55$ $s^{2}2\theta_{23} = 0.99$

With 20yrs SK, discrimination is very hard.

Shiozawa

Nakayama

80 SK years

s²2θ₁₂=0.825 s²θ₂₃=0.40 ~ 0.60 s²θ₁₃=0.00~0.04 δcp=45° Δm^{2}_{12} =8.3e-5 Δm^{2}_{23} =2.5e-3

With 80yrs SK, discrimination is better and possible for many test points.

Positive signal for nonzero θ_{13} can be seen if θ_{13} is near the CHOOZ limit and $s^2\theta_{23} > 0.5$

Measurement of Delta

 $s^{2}2\theta_{12}=0.825$ $s^{2}\theta_{23}=0.4 \sim 0.6$ $s^{2}\theta_{13}=0.04$ $\delta cp=45^{\circ}$ $\Delta m^{2}{}_{12}=8.3e-5$ $\Delta m^{2}{}_{23}=2.5e-3$

Discussion of Systematic Uncertainties

Neutrino FluxesNeutrino Cross Sections

The ATMOSPHERIC NEUTRINO FIJXES

Angle Averaged Fluxes

Comparison: Model / HKKM-1995

The allowed intervals for the neutrino fundamental parameters (Masses, mixings) will depend (in Bayesian sense) on our beliefs about the theoretical errors.

This seems to be happening NOW, and it will be a much more significant problem for future precision studies

Very Important to have a well defined, more systematic, more rigorous, more consistent way to describe QUANTITAVELY what we believe are the uncertainties in the flux Elements for the prediction of the Atmospheric Neutrino Fluxes:

- Primary Cosmic Ray Flux
- Geomagnetic Effects
- Hadronic Interaction Modeling
- Calculation Method:

MUON MEASUREMENT CONSTRAINTS

Talks of

M.Honda (HKKM calculation)Giles Barr (Bartol calculation)

PRIMARY COSMIC RAYS

- Understand better Solar Modulation Effects
- Solve the BESS-AMS/Caprice discrepancy at 10-100 GeV
- Poor measurements in the region 200 GeV EAS (> 10^{14} eV)

 $\mathfrak{S}(\mathbb{E}) \neq \mathbb{E}^{22} \left[(\mathfrak{cm}^2 \otimes \mathfrak{s}_2)^{-1} \mathbb{C}_k \nabla_k \right]$

Comparison with Air Shower Experiments at the knee $\sim 10^{15} - 10^{16}$ eV

Great importance for Cosmic Ray Measurements in the "knee" region and beyond $\phi(E) \, \ast \, E^{2.7} \, \left[(\mathrm{cm}^2 \, \mathrm{s} \, \mathrm{sr})^{-1} \, \, \mathrm{GeV}^{1.7} \right] \label{eq:eq:expansion}$

BESS

tituti

1000

Flight Map of BESS

Summary of BESS-2000

Climax neutron monitor & Sunspot number

year

Solar Modulation Effects

Long time Integration Problem Obtain an observable (for example: Neutron Monitor Data) to predict the Solar Modulation

BESS protons

Hadron Production Measurements

Giles Barr

NEW High Quality Data will soon arrive

HARP : 3-15 GeV

MIPP : 5 – 120 GeV

NA49 : 100, 158 GeV
Existing measurements

Boxes show importance of phase space region for contained atmospheric neutrino events.

Existing measurements.

P_{T} range covered

New measurements

NA49 setup

Vertex TPCs Main TPCs

Special Run Motivated by Cosmic Ray Studies (and Neutrino Flux calculation in particular) Giles Barr a key person in the proposal (P322)

proton + Carbon interactions

can compare to pp interactions

158 GeV (500K triggers)100 GeV (160K triggers)

High Quality Data

HARP Experiment3-15 GeV protons on different target

Data Collected and under Analysis

Performances probably a little below expectations but very valuable

²

Target	Physics	Data Points	Primary proton	Total number
			Average Intensity/spi	II of Primary Protons
NUMI 1	MINOS	3.3	1250	00 2.06E+10
NUMI 2	MINOS	3.3	1250	00 2.06E+10
H2	Scaling	6	9.76E+	09 2.93E+15
N2	Atmosphericv	4	9.76E+	09 1.95E+15
Be	рА	2	9.76E+	09 9.76E+14
Be	Survey	1	9.76E+	09 4.88E+14
с	Survey	1	9.76E+	09 4.88E+14
Cu	рА	2	9.76E+	09 9.76E+14
Cu	Survey	1	9.76E+	09 4.88E+14
Pb	рА	2	9.76E+	09 9.76E+14
Pb	Survey	1	9.76E+	09 4.88E+14
Total		26.6		9.76E+15

Broad Goal Obtain large bstatistics of unbiased complete coverage hadron production data

Atmospheric Neutrinos Nitrogen Target 5,15,25,5,70,90 GeV complementary to HARP

Atm. muon & neutrino

Near top of the Atmosphere
5 - 30 g/cm²
balloon floating altitude

Inside the Atmosphere
5 - 800 g/cm²
balloon as(des)cending

3. On the ground 800 - 1000 g/cm² ground/mountain floating altitude

ascending/ descending

mountain

BESS Data summary

site	cutoff Rigidity	atm. pressure	date
	11.4 GV		Dec. 95
Tsukuba		1030 g/cm ²	May. 97
Japan			Nov. 97
			Oct. 02
Mt. Norikura	11.2 GV	740 g/cm ²	Sep. 99
Et Sumpor	4.3 GV	890 g/cm ²	Sep. 01
		800 to 5 g/cm ²	Sep. 01
INIVI, USA		5 to 30 g/cm ²	
	0.4 GV		Jul. 97
		$1000 a/cm^2$	Jul. 98
Lynn Lake		1000 g/cm-	Jul. 99
MB, Canada			Jul. 00
		800 to 5 g/cm ²	Aug. 99
			Aug. 00

Altitude

ex) BESS; Almost same condition except for altitude

Growth curve

Not perfect ...

MC < DATA

Honda-san's talk ...

The NEUTRINO CROSS SECTION

E (GeV)

New very Valuable Data on the Neutrino Interaction Properties from the Near Detector at K2K

Hasegawa (SciBar Detector) Kameda (Kton detector)

SCIBAR Detector

15,000 channels (scintillator bars $2.5 * 1.3 * 300 \text{ cm}^3$

15 tons

Main Motivation is to measure the shape of the Energy Spectrum at the near site using QE reactions

Detector Installed Succesfully

20 K Neutrino Events

First physics result will be released in the beginning of next year.

New Data : New Phenomena

The "Low Q²" Anomaly

Scifi 2track nonQE enriched event

1kton water Cherenkov detector

Jun Kameda

Reconstruction of the Neutrino Spectrum

π^0 event analysis

Motivation:

Precise understanding of π^0 production rate π^0 momentum/angle distribution is important for these analyses.

Main background for $v_{\mu} \rightarrow v_{e}$ search

- $\pi^0 \rightarrow \gamma \gamma$ can mimic an electron
 - asymmetric decay
 - Cherenkov ring overlapping

 $v_{\mu} \rightarrow v_{\tau} / v_{\mu} \rightarrow v_{s}$ separation single π^{0} events : good NC sample

Data set

Period : 2000/Jan-Mar. 2001/Jan~Jul.

(~ 3x10¹⁹ pot)

Selection Criteria of π^0 events

25t fiducial volume Fully-Contained number of rings = 2 both e-like PID $M\gamma\gamma: 85 \sim 215 \text{ MeV/c}^2$

$$N(v_{\mu}CC)$$
 as normalization :

cf. $\sigma(NC1\pi^0) / \sigma(\nu_{\mu}CC) = 0.064$ from NEUT

NUCLEAR THEORY

and Neutrino Interactions

Beyond the Fermi Gas Model

NUCLEAR EFFECTS

E_v (GeV)

Nakamura, Sakuda, Seki

QUASIELASTIC PEAK

VIRTUAL W ABSORPTION BY ONE NUCLEON

A(1232) RESONANCE PEAK

EXCITATION OF Δ (1232) DEGREES OF FREEDOM

Juan Nieves

Juan Nieves

e

$E_{ u}$ [MeV]		$\sigma \left({}^{16} O(\nu_{\mu}, \mu^{-} X) \right) [10^{-40} \text{ cm}^{2}]$			$\sigma \left({^{16}} O(\bar{\nu}_{\mu}, \mu^+ X) \right) [10^{-40} \text{ cm}^2]$		
500	Theorem is	REL	NOREL	FSI	REL	NOREL	FSI
LIVID	RPA	375.5	413.0	389.8	113.4	126.8	129.7
375	Pauli	334.6	354.8	202.2	115.1	122.6	105.0
	\mathbf{RPA}	243.1	263.9	243.9	79.8	87.9	87.5
250	Pauli	155.7	162.2	122.5	63.4	66.4	52.8
	RPA	94.9	101.9	-93,6	38.8	42.1	40,3
$E_{ u}$ [MeV]		$\sigma \left({^{16}}\mathrm{O}(\nu_{a},e^{-}X) \right) \ [10^{-40} \ \mathrm{cm}^{2}]$			$\sigma \left({{}^{16}{\rm O}(\bar{\nu}_e,e^+X)} \right) \ [10^{-40} \ {\rm cm}^2]$		
+W [[945]3]		σ (Q(k	$e \left(e \left(A \right) \right)$ [11	944	w 6 mere	(e. e. a) / (+	, cm-l
₩ν Inte (]		REL	NOREL	FSI	REL	NOREL	FSI
400	Pauli	REL 389.4	NOREL 416.6	FSI 352,5	REL 130.0	NOREL 139.1	FSI 121.0
400	Pauli RPA	REL 389,4 294.7	NOREL 416.6 322.6	FSI 352.5 303.6	REL 130.0 91.9	NOREL 139.1 101.9	FSI 121.0 104.8
400 310	Pauli RPA Pauli	REL 389.4 294.7 281.4	e, e A)) [R NOREL 416.6 322.6 297.4	FSI 352.5 303.6 240.6	REL 130.0 91.9 98.1	NOREL 139.1 101.9 104.0	FSI 121.0 104.8 87.2
400 310	Pauli RPA Pauli RPA	REL 389,4 294.7 281.4 192.2	e, e A)) [II NOREL 416.6 322.6 297.4 209.0	FSI 352.5 303.6 240.6 195.2	REL 130.0 91.9 98.1 65.9	NOREL 139.1 101.9 104.0 72.4	FSI 121.0 104.8 87.2 73.0
400 310 220	Pauli RPA Pauli RPA Pauli	REL 389,4 294.7 281,4 192.2 149,5	NOREL 416.6 322.6 297.4 209.0 156.2	FSI 352,5 303,6 240,6 195,2 121,2	REL 130.0 91.9 98.1 65.9 60.7	NOREL 139.1 101.9 104.0 72.4 63.6	FSI 121.0 104.8 87.2 73.0 51.0

Juan Nieves

CONCLUSIONS

The perspectives for future precision Studies with Atmospheric Neutrinos appear very interesting

- The potential for very interesting measurements exists even for a relatively modest increase in Exposure (20 SK-years)
- "Hyper-K" would offer even more interesting results.
- If the neutrino-Kami (one more time) are kind and theta(13) is just below the Chooz limit, life will be very interesting indeed !

There is an important prize in the improvement of the theoretical prediction. It is worthwhile to invest work in this direction.

Additional Conclusion:

The Organization of the Workshop has been remarkable, in all its details !

Kajita Sensei, dear Organizers

Thanks a lot for a truly excellent meeting !