Atmospheric muon flux at various locations

T. Sanuki University of Tokyo

Outline

1. Data and possible source of systematic error

- i. Near top of the Atmosphere
 - $5 30 \text{ g/cm}^2$
- ii. Inside the Atmosphere
 - $5 800 \text{ g/cm}^2$
- iii. On the ground
 - 800 1000 g/cm²

2. Observed and calculated muon spectra

Atm. muon & neutrino

Near top of the Atmosphere
 5 - 30 g/cm²
 balloon floating altitude

2. Inside the Atmosphere
 5 - 800 g/cm²
 balloon as(des)cending

3. On the ground 800 - 1000 g/cm² ground/mountain floating altitude

p

ascending/ descending

mountain

On the ground

800 - 1000 g/cm²

On the ground

high statistics
infinite data taking time
infinite batteries

calibrating atm. v calculation (M.C. simulation)

On the ground

Various measurement
Two types of measurement
a. Normalized
b. NOT Normalized (Absolute)

Normalized Flux

- 1. Measure spectrum shape (not absolute intensity)
- 2. Calculate integrated flux above some momentum
- 3. Normalize the measured spectrum to a "standard" integral intensity

"Standard" Flux

Range Counter

- Not measure momentum event by event
- Poor momentum resolution
- Mult. scatt. etc.

J. Phys. G 9(1983) 1577

p_threshold
p>0.44GeV/c
p>0.82GeV/c

p>1.73GeV/*c*

p>2.68GeV/c

p>3.64GeV/*c*

Normalized Flux

Poor statistics in higher momentum region
 Same systematic error.

Absolute Flux Measurement is important

$$F(p) = \frac{N(p \sim p + \Delta p)}{\varepsilon(p) \cdot S\Omega(p)t \cdot \Delta p}$$

Absolute Flux

Primary CR Spectra + Hadronic Interaction + Decay

Production height Altitude Zenith angle

Different experimental condition

Different Condition

• Altitude

- Atmospheric Structure; $\rho(h)$
- Zenith Angle
- Geomagnetic Cutoff Rigidity
- (Solar Modulation)

BESS Data summary

site	cutoff Rigidity	atm. pressure	date
Tsukuba Japan	11.4 GV	1030 g/cm ²	Dec. 95
			May. 97
			Nov. 97
			Oct. 02
Mt. Norikura	11.2 GV	740 g/cm ²	Sep. 99
Ft. Sumner NM, USA	4.3 GV	890 g/cm ²	Sep. 01
		800 to 5 g/cm ²	Sep. 01
		5 to 30 g/cm ²	
Lynn Lake MB, Canada	0.4 GV	1000 g/cm ²	Jul. 97
			Jul. 98
			Jul. 99
			Jul. 00
		800 to 5 g/cm ²	Aug. 99
			Aug. 00

Geomagnetic Field

10% effect @1GeV/c

Altitude

ex) BESS; Almost same condition except for altitude

Seasonal variation in muon

Zenith Angle

ex) BESS; Same condition except for zenith angle

Inside the Atmosphere

5 - 800 g/cm²

Balloon ascending period

✓ Flux vs Residual Atmospheric depth ✓ growth curve ~5 - 800 g/cm² $p + A \rightarrow \pi + \pi + \cdots$ $\pi \rightarrow \mu + \nu_{\mu}$ $\mu \rightarrow e + \nu_e + \nu_{\mu}$

Indirect measurement of atm. v production

Growth curve

Poor statistics

Y. Yamamoto

Near Top of the Atmosphere

5 - 30 g/cm²

Balloon altitude

\checkmark Thin target ~5 - 30 g/cm² < 100g/cm²

Balloon altitude

ex) BESS; Unique balloon flight at Ft. Sumner, NM, US.

Good statistics during slow descending.

Perfect MC ?

MC simulation

- 1. input spectrum
 - BESS data + power-law extrapolation
- 2. hadronic interaction
 - DPMJET-III based
- 3. same condition as BESS observation
 - latitude and longitude (geomagnetic Rc)
 - altitude
 - date
 - observed $\rho(h)$ data + NRLMSISE-00 Model
 - solar modulation
 - zenith angle

M. Honda

Not perfect ...

MC < DATA

Honda-san's talk...

Summary

Many experiments at various locations

- Site (Cutoff Rigidity, Altitude)
- Date (Solar modulation, atm. structure)
- Zenith angle
 Huge effect on flux in low momentum region
- Calculation under the same condition as experiment

For controlling systematic error in neutrino calculation.