
Sub-Dominant Oscillation Effects in Atmospheric Neutrino Experiments 205

A Simple Approach to Neutrino Production of ∆
Resonance

Ji Young YU

Theoretische Physik III, University of Dortmund, 44221 Dortmund, Germany

Abstract

We present a simple and self-contained approach to resonance production

by neutrinos focusing on the ∆(1232) resonance which is dominant at low ener-

gies. In this paper, we consider free nucleon targets. The ∆ resonance can be

described by two form factors CV
3 and CA

5 . Using up-to-date parameterizations

for these form factors, differential cross sections are calculated and compared with

experimental data. Further, we apply this approach to the electroproduction case

and calculate pion angular distributions which are compared with experimental

data.

1. Introduction

Neutrino oscillations are well-established by now pointing to a picture with

three massive neutrinos. The oscillations with three neutrino generations are

described in terms of three mixing angles θ12, θ13, θ23, a CP violating phase δ and

two mass differences ∆21 = m2
2−m2

1, ∆32 = m2
3−m2

2. So far, atmospheric neutrino

data and results from the K2K long-baseline (LBL) experiment determine the

parameter ∆32 = 2.2 × 10−3 eV2 to about 25% accuracy and the mixing angle

θ23 � π/2. An immediate goal of operating and future LBL experiments will be

to significantly improve the precision of these determinations. Ultimately, future

LBL experiments aim at measuring subdominant oscillation parameters like the

mixing angle θ13 and, if θ13 is not too small, CP violation in the leptonic sector.

For a recent overview see, e.g., Ref. [1]. The typical incoming neutrino fluxes of

the LBL experiments are in the sub-GeV up to a few GeV range, similar to the

atmospheric neutrino flux. Obviously, with increasing precision of measurements

and smallness of parameters it will be necessary to further improve the knowledge

of neutrino cross sections used to detect the neutrino species at the near and far

detectors of LBL experiments.

The excitation of the resonances by electrons and neutrinos has been stud-

ied extensively in the literature. The earlier articles [2, 3, 4, 5, 6] tried to determine
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the p∆ transition form factors in terms of basic principles, like conserved vector

current (CVC), partially conserved axial-vector current (PCAC), dispersion rela-

tions, etc. These and subsequent papers introduced dipole form factors and in

various cases other functional forms with additional kinematic factors in order to

reproduce the data. As a result, the cross sections (differential and integrated)

were presented in terms of several parameters [7, 8, 9, 10]. The relatively large

number of parameters and the limited statistics of the experiments provided qual-

itative comparisons but an accurate determination of the terms is still missing.

Therefore, it is important to improve the calculation of the excitation of

resonances with isospin I = 3/2 and I = 1/2 looking into various terms that enter

the calculations and trying to determine them, as accurately as possible. This has

been done recently in Ref. [11]. In this contribution we will focus on the excitation

of the ∆ resonance (P33(1232)) which is dominant at the low energies considered

here [11] and which is relevant for the study of single pion production in current

and future long baseline experiments like K2K, MINOS, OPERA, ICARUS, J2K,

etc. The formulas and form factors for other resonances P11(1440), S11(1535) and

D13(1520) can be found in [11].

In order to obtain larger event rates neutrino experiments use medium-

heavy and heavy nuclei targets which brings in additional corrections such as the

Pauli exclusion principle, Fermi motion and absorption and charge exchange of

the produced pions in nuclei. In this paper, we consider free nucleon targets. For

a discussion of nuclear effects included in our approach we refer to Refs. [12].

The paper is organized as follows. In Sec. 2., we present our general

formulation and detailed discussion of form factors for evaluating the differential

and total cross sections of the ∆ resonance production following [11] emphasizing

the minimal input, which is necessary. The numerical results are presented in Sec.

3.. In Sec. 4., we compare our model with electroproduction data from JLAB and

finally give our conclusions in Sec. 5..

2. Neutrino production of ∆ resonance

The invariant matrix element for charged current ∆ resonance production

is written as

M =
GF cos θc√

2
jα < ∆++|V α −Aα|p > , (1)

where V and A denote the hadronic weak vector and axial vector currents, respec-

tively, θc is the Cabibbo angle and GF the Fermi constant. The matrix element

of the leptonic weak current, jα, is

jα = ūµγ
α(1 − γ5)uν . (2)
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Following the notation of [5] we can express the matrix element as

M =
G√

2
ψ̄α

{[ CV
3

MN
γλ +

CV
4

M2
N

(P∆)λ +
CV

5

M2
N

(Pp)λ

]
γ5F

λα + CV
6 j

αγ5

+
[ CA

3

MN
γλ +

CA
4

M2
N

(P∆)λ

]
γ5F

λα + CA
5 j

α +
CA

6

M2
N

qαqλjλ

}
uf(W ) (3)

where F λα ≡ qλjα − qαjλ. ψα is the Rarita-Schwinger spinor for the ∆++ spin

state, u is the Dirac spinor for the initial proton spin state, Pp is the four-

momentum of the proton, and the S-wave Breit-Wigner factor f(W ) can be writ-

ten as follows

f(W ) =

√
Γ∆(W )

2π

(M∆ −W ) − 1
2
iΓ∆(W )

, Γ∆(W ) =
Γ0

∆qπ(W )

qπ(M∆)
(4)

with Γ(W ) = Γ0 qπ(W )/qπ(WR) and Γ0 = 120 GeV. The CV
j and CA

j (j =

3, 4, 5, 6) are the vector and axial vector form factors, respectively.

Due to the CVC the vector form factor CV
6 is zero and the other vector

form factors can be determined from electroproduction experiments, where the

magnetic form factor dominates. This leads to the following relations

CV
4 (Q2) = −M

W
CV

3 (Q2) and CV
5 (Q2) = 0. (5)

This equation implies that electroproduction data depend only on the vector form

factor CV
3 (Q2). Therefore, precise electroproduction data determine this form

factor, which can be parameterized in various ways. Early theoretical work [13, 14]

predicted the form factor to have a dipole form which was used to analyse neutrino

scattering experiments [15, 16, 17]. However, subsequent electroproduction data

[18, 19] showed that the magnetic N −∆ transition form factor drops faster with

increasing Q2 than the dipole form factor. Therefore, in our approach [11] we

employ a modified dipole form for CV
3 giving an accurate representation:

CV
3 (Q2) =

CV
3 (0)[

1 + Q2

M2
V

]2

1

(1 + Q2

4M2
V

)
. (6)

Figure ?? shows data for the magnetic N − ∆ transition form factor GM ,

divided by the dipole form factor GD = 1/(1 + Q2/M2
V )2, in dependence of Q2.

The solid curve, denoted ’PSY’, shows our form factor in Eq. (6) and the dashed

curve is the Sato-Lee form factor from Ref. [20]. One can see a clear deviation

from the dipole form. Further details of the vector and axial vector contributions
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Fig 1. Magnetic N −∆ transition form factor. The solid and dotted curves are the
PSY FF [11] and the SL FF [20], respectively.

are discussed in section 3., where we will estimate the contribution of CV
3 from

the electroproduction data.

We now turn to the axial vector form factors CA
j , (j = 1, ..., 6). The

PCAC condition gives the relation CA
5 (Q2) =

CA
6

M2Q
2 which for small Q2 = 0 leads

to the numerical value CA
5 (0) = 1.2 [6]. The contribution of the form factor

CA
6 to the cross section is proportional to the lepton mass and will be ignored.

The Q2-dependence of the form factors varies among the publications resulting in

different cross sections and different Q2 distributions even when the same axial

vector mass MA is used. For this dependence we shall use again a modified dipole

form

CA
5 (Q2) =

1.2[
1 + Q2

M2
A

]2

1

(1 + Q2

3M2
A

)
. (7)

For the other two form factors CA
3 (Q2) and CA

4 (Q2) we shall use CA
3 = 0 and

CA
4 (Q2) = −1

4
CA

5 [6]. It is evident that there is still some arbitrariness in the

form factors with CA
3 and CA

4 being small.

The double differential cross section for ∆ resonance production is given

by

dσ

dQ2dW 2
=

G2
F

16πM2

3∑
i=1

[KiWi] (8)

where GF is the Fermi constant and M is the nucleon mass. The kinematic factors

Ki(Q
2, Eν ,W ) and the structure functions Wi(Q

2,W ) which are expressed in

terms of helicity amplitudes are given in Ref. [6]. The helicity amplitudes depend

on the Breit-Wigner factor in Eq. (4) and on the form factors CV
j , C

A
j which

have been introduced already. In order to calculate the cross sections we need
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the connection between the form factors CV
j , C

A
j and the helicity matrix elements

(T ’s and U ’s). This relationship between them is discussed in Refs. [6, 11].

3. Results and discussions

The relative importance of the various form factors is shown in figure

2. One can see that CV
3 and CA

5 give the dominant contribution to the cross

section. The cross section from the axial form factors has a peak at Q2 = 0,

while the cross section from CV
3 turns to zero. The zero from the vector form

factor is understood, because in the configuration where the muon is parallel to

the neutrino, the leptonic current is proportional to qµ and takes the divergence of

the vector current, which vanishes by CVC. Since the contributions from CV
4 and

CA
4 are very small the excitation of the ∆ resonance, to the accuracy of present

experiments, is well described by two form factors CV
3 and CA

5 . Note that, since

all form factors have been derived from photo- and electroproduction experiments

in which a ∆+ or a ∆0 was produced, all the form factors need to be multiplied

by
√

3 in order to obtain the correct cross section for the ∆++ production due to

the fact that < ∆++|Vα|p >=
√

3 < ∆+|Vem|p >.

C3
V

C5
A

C4
V

C4
A

Q2(GeV2)

dσ
/d

Q
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0-3
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2 /G

eV
2 )

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Fig 2. Partial cross sections proportional to the form factors in dependence of Q2.
The solid and dotted curves are the contributions proportional to the vector form
factors CV

3 and CV
4 , respectively. The dashed and dot-dashed curves denote the

parts proportional to the axial vector form factors CA
5 and CA

4 .

In addition, there are precise data for the electroproduction of the ∆ and

other resonances [18], including their decays to various pion-nucleon modes, which

allow to estimate the vector contribution. In the work of Galster et al. [18] cross

sections for the channels (p + π0) and (n + π+) are tabulated from which we

conclude that both I = 3/2 and I = 1/2 amplitudes are present. For instance, for

W = 1.232 GeV the I = 1/2 background amounts about 10% of the cross section.
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Fig 3. Cross section dV ν/dQ2dW for electroproduction in the ∆ resonance in com-
parison with Galster et al. data [18]. The solid, dotted and dot-dashed lines are
obtained with CV

3 = 2.05, CV
3 = 2.0 and CV

3 = 2.1, respectively. The dashed line
denotes the background contribution.

In Ref. [11], we performed a comparison with the electroproduction data

after subtraction of the background, as shown in Fig. 3, and then used CVC to

obtain the contribution of V +
µ to neutrino induced reactions using the formula

dV ν

dQ2dW
=
G2

π

3

8

Q4

πα2

dσem, I=1

dQ2dW
(9)

to convert the observed [18] cross sections for the sum of the reactions e + p →
e+

{
p π0

nπ+ to the vector contribution in the reaction ν+p→ µ−+p+π+ denoted

in Eq. (9) by V ν . We used the data of Galster et al. [18] at Q2 = 0.35 GeV2 and

subtracted the background as suggested by them. Subsequently, we converted

the data points to the vector contribution for the neutrino reaction according

to Eq. (9). The solid, dotted, and dot-dashed curves correspond to neutrino

cross sections using a vector form factor CV
3 (Q2) with CV

3 (0) = 2.05, 2.0, 2.1,

respectively. The dashed line shows the contribution from the background. It

is noteworthy that the analysis of the electroproduction data [18] included a

contribution from the D13(1520) resonance which was found to be small.

Next, we consider the Q2 distribution [21] from the Brookhaven experi-

ment [22, 23], where the data have been presented as a histogram averaged over

the neutrino flux and with an unspecified normalization. For the relative normal-

ization, we normalized the area under the theoretical curve for Q2 ≥ 0.2 GeV2 to

the corresponding area of the histogram. In addition to the form factors for the ∆

resonance as described above we included a Pauli suppression factor in a simple

Fermi gas model with Fermi momentum pF = 0.16 GeV [11]. The result is shown
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Fig 4. Q2-spectrum of the process νp → µ−pπ+ in comparison with BNL data [22, 23].
The solid curve is with Pauli factor and dotted curve is free case.

as the solid curve in figure 4. The agreement is quite satisfactory. Performing a

χ2-fit we obtained the following values for the free parameters

CV
3 (0) = 1.95 , CA

5 (0) = 1.2 ,

MV = 0.84 GeV , MA = 1.05 GeV . (10)

For the entire Q2 region we found a χ2 per degree of freedom of 1.76. Furthermore,

in order to reduce nuclear effects we performed a fit to all data withQ2 > 0.2 GeV2

giving a χ2/d.o.f = 1.04. In the theoretical curves we averaged over the neutrino

flux for the BNL experiment [24]. The dotted curve is the calculation without

Pauli factor and the solid one with Pauli suppression factor included which has

a small effect. It will be interesting to repeat this analysis as soon as new data

become available. From Fig. 4 we can see that in the region of small Q2, say

Q2 < 0.2 GeV2, the theoretical values are significantly above the experimental

results which is not cured by a simple Pauli suppression factor.

To shed more light on this problem, it is reasonable to take the ratio of

single pion production (RES) and quasi elastic scattering (QE) events, σ(RES)
σ(QE)

. In

Fig. 5 we show this ratio for total cross sections (left) and the Q2 distributions

(right), respectively. The curves have been calculated with MA = 1.05 GeV and

various values for CA
5 (0) and have been compared with BNL data [22]. Since the

ratio reduces flux and experimental uncertainties it is an especially good test for a

theoretical model. As can be seen from these figures we find very good agreement

between our theoretical curves and the data, particularly also at low Q2, say

Q2 < 0.2 GeV2, because uncertainties in the low Q2 region which are common to

both, resonance and quasi-elastic scattering, drop out in the ratios. Comparisons
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Fig 5. Ratio of the total cross section (left) and the Q2 distribution (right) for RES
and QE in comparison with BNL data [22]. The solid, dotted, and dashed lines
have been obtained with CA

5 = 1.08, CA
5 = 1.04, and CA

5 = 1.12, respectively.

with other experimental data from BNL, FNAL, and CERN [22, 23, 25, 26] can

be found in Ref. [11] where we compare these data with our form factors and

older form factors given in [6].

4. Pion electroproduction

To investigate pion electroproduction we first consider the fully differential

cross section for neutrino reactions [6] given by

d4σ

dQ2dW 2dΩ�
π

=
1√
4π

d2σ

dQ2dW 2

(
Y 0

0 − 2√
5

(ρ̃(33) − 1

2
)Y 0

2

+
4√
10
ρ̃(31)ReY 1

2 − 4√
10
ρ̃(3 −1)ReY 2

2

)
(11)

where the double differential cross section d2σ
dQ2dW 2 = N

∑3
i=1KiW̃i can be found

in Eq. (8). Furthermore, ρ̃(33), ρ̃(31), ρ̃(3 −1) are spin density matrix elements and

Y m
l (θπ, φπ) are spherical harmonic functions. This cross section can be easily

converted to the electroproduction case by dropping axial vector parts and an

appropriate change of the normalization factor:

d4σ

dQ2dW 2dΩ�
π

=
N√
4π

( 3∑
i=1

Ki(W̃i −Di
(3 cos2 θ�π − 1)

2
)

− 2
√

3 sin θ�π cos θ�π cosφ�
π(K4D4 +K5D5)

−
√

3 sin2 θ�π cos 2φ�
π(K6D6)

)
(12)
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with the normalization factor N = πα2

2M2Q2 . Note that this cross section has con-

tributions proportional to cos 2φ�
π, cosφ�

π and a part independent of φ�
π, where

φ�
π is the pion azimuthal angle. Further, θ�π denotes the pion polar angle. The

kinematic factors Ki, i = 1, ..., 6 and the structure functions W̃i, Di can be found

in [6] and depend on the vector form factors introduced in Sec. 2..
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Fig 6. Electroproduction data [27] for Q2 = 2.8 GeV2 (left) and Q2 = 4 GeV2 (right),
respectively, the reaction e + p → e + p + π0.

For our numerical comparison with electroproduction data we have calcu-

lated the fully differential cross section in Eq. (12) using the vector form factors

given in Eqs. (5,6). In Fig. 6 we compare our results with JLab data for the

reaction e + p → e + p + π0 [27]. Shown is the dependence on the pion polar

angle θπ for several azimuthal angles φπ, fixed W = 1.235 GeV, Ee = 3.2 GeV

and Q2 = 2.8 GeV2 (left) respectively Q2 = 4 GeV2 (right). With exception of

the data points at |φπ| ≥ 135◦, the description of the data by our simple model

is quite satisfactory.

On the left side of Fig. 7, we show the θπ dependence for different values of
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Fig 7. (Left) Dependence on θπ for different values of the πN invariant mass W for
Q2 = 2.8 GeV2 and Q2 = 4 GeV2. The data are from [27]. (Right) The same as in
Fig. 6 for small momentum transfers Q2 = 0.45 GeV2 and Q2 = 0.75 GeV2. The
data points are from Ref. [28].

the πN-invariant massW for Q2 = 2.8 GeV2 and Q2 = 4 GeV2. The experimental

results at different invariant mass W have been taken from [27]. Here, our results

tend to undershoot the data in the region of small θπ. The right side of Fig. 7

shows the θπ dependence for different azimuthal angles φπ, for the region of small

momentum transfers Q2 = 0.45 GeV2 and Q2 = 0.75 GeV2. The data points

are from Ref. [28]. One can see that at small momentum transfers the data are

reasonably described even in the region of large azimuthal angles.

Before we leave this section it should be noted that the theoretical curves

have been obtained without fine tuning of the parameter CV
3 (0), for which we took

the value CV
3 (0) = 2.0, and without including the background from the I = 1/2

channel and a non-resonant background which is expected to be of the order of

10% at the resonance region.
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5. Conclusions

We have shown that, at current experimental accuracy, the excitation of

the ∆ resonance is well described by two form factors, CV
3 and CA

5 . CV
3 is consis-

tent with electroproduction data and CA
5 can be determined only from neutrino

data. Furthermore, relying on the connection of the weak vector current with the

electromagnetic current due to the CVC condition we have compared the vector

part of our formalism with electroproduction data.

In the future it will be interesting to include higher resonances and a

non-resonant background and to perform a more detailed comparison with elec-

troproduction data in order to study further the connection between neutrino-

and electroproduction.
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