
Sub-Dominant Oscillation Effects in Atmospheric Neutrino Experiments 183

Electron- and Neutrino-Nucleus Cross Sections using
Spectral Functions

Hiroki NAKAMURA

Department of Physics, Waseda University, Tokyo 169-8555, Japan

Ryoichi SEKI

Department of Physics and Astronomy, California State University, Northridge,

Northridge, CA 91330, USA

W. K. Kellogg Radiation Laboratory, California Institute of Technology,

Pasadena, CA 91125, USA

Makoto SAKUDA

Department of Physics, Okayama University, Okayama 700 -8530, Japan

Abstract

We examine various nuclear effects in the initial and final states of lepton

scattering by calculating quasi-elastic and quasi-free ∆(1232) production cross

sections. Comparison of the calculations with 16O(e,e’) data in the 700 – 1200

MeV incident energy shows that the use of the spectral function yields much

more realistic cross sections than the Fermi gas model does. The application of

our examination has a good promise in the application to neutrino scattering.

1. Introduction

As new and precise neutrino oscillation experiments are planned and some

of them begin soon, reliable calculations of observables in neutrino-nucleus re-

actions will become vital. Our final goal is to meet this challenge to calculate

them precise enough for the precision that will be reached by these experiments.

By doing so, we expect that not only the calculation would be instrumental for

the precise determination of the neutrino masses, but also they would reveal new

interesting nuclear physics such as those associated with the axial currents in

nuclei. In this contribution, we report the present status of our calculation on

quasi-elastic scattering and on quasi-free ∆(1232) production, and update the

results that we have reported in the previous neutrino workshops [1, 2].

We formulate neutrino-nucleus interactions as a sum of neutrino-nucleon

interactions under the impulse approximation, under the assumption that the

nuclear weak current is a sum of the nucleonic weak currents. At the initial

stage of the interaction, the incident neutrino interacts with a nucleon in nucleus,
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which carries the momentum and energy determined by nuclear structure. The

energy-momentum spectrum of bound nucleons must be realistic for the energy-

momentum transfer involved in the neutrino reactions under consideration. In

the high-energy scattering of our interest, the magnitude of the transfer is mostly

too large to be appropriately described by Fermi gas model or even by mean-

field models such as simple shell models. The best candidates of the spectrum

presently available are those provided by the spectral functions constructed from

a many-body calculation using realistic nucleon-nucleon potentials. In this work,

we use the spectral function obtained by Benhar et al. [3], and compare the

cross sections that are calculated by it and by Fermi gas model, together with

experimental electron scattering data.

After the initial interaction, the neutrino-nucleus reaction undergoes the

final-state interactions that involve various nuclear effects. In our comparison, we

also examine various models describing the final-state interactions.

2. Basic formalism

Our basic formalism is the same for the electron- and neutrino-nucleus

interactions. The formalism for the quasi-elastic and also quasi-free Delta pro-

duction cross sections has been described in the previous neutrino workshops [1, 2].

Here, we include only the key expressions relevant to the present discussions.

Quasi-elastic cross section is written as

dσ

dE ′dΩ
=

k′

8(2π)4MAE

∫
d3pF (p, q, ω)

∑
spin

|M�N |2, (1)

where E is the incident lepton energy, MA the target nucleus mass, and E ′ and k′

are the energy and momentum of the scattered lepton, respectively. M�N is the

invariant amplitude of lepton-nucleon elastic scattering. F (p, q, ω) is proportional

to the imaginary part of the 1p1h Green’s function, expressed in terms of the

momentum and energy transferred to the nucleus, q and ω, respectively, and also

of the nucleon momentum bound in the nucleus, p. For high-energy reactions,

F (p, q, ω) is approximately factorized as

F (p, q, ω) =
MA

(2π)2V

∫
dω′Ph(p, ω′)Pp(p + q, ω − ω′), (2)

where Ph(p, ω) and Pp(p, ω) are the 1h and 1p Green’s functions, respectively. V

is the normalization volume. Apart from a simple kinematical factor as shown

in Eq. (4) below, Ph(p, ω) is referred as the spectral function and describes the

probability to remove a nucleon of the momentum p with the removal energy ω.
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Pp(p, ω) describes the final-state interactions of the knocked-out nucleon. Thus, as

they are combined, Ph(p, ω) and Pp(p, ω) fully describe dynamics of the response

of the nucleon involved in the lepton scattering.

The form factors that we use in the invariant amplitudes of electron-

nucleon scattering are of non-dipole forms, taken from Ref. [4, 5]. The axial

form factor used in the invariant amplitude of neutrino-nucleon scattering is of

the dipole form with MA = 1.07 GeV.

Quasi-free ∆ resonance production cross sections are calculated also from

Eq. (1) by using the invariant amplitude of the ∆ production [6]. The N-∆

transition form factors are taken from a recent work of Ref. [7].

3. Nuclear Effects

As noted above, nuclear effects are included in Ph(p, ω) and Pp(p, ω). In

the following, we discuss Ph(p, ω) and Pp(p, ω) separately.

3.1. Ph(p, ω): the initial nuclear state

3.1.1. a. Fermi Gas Model

In our formalism, Fermi gas model, widely used in Monte Carlo simulation,

corresponds to:

Ph(p, ω) =
V

Ep
θ(PF − p)δ(Ep + ω) , (3)

where Ep =
√

p2 + M2−EB is the initial nucleon energy with the effective binding

energy EB and with |p| = p. The Fermi Gas model used here is a relativistic one

as formulated some years ago [8, 9]. Equation (3) shows that the nucleons are

assumed to be non-interacting, experiencing EB at the zero temperature.

For numerical calculations for oxygen, we take PF to be 225 MeV and EB

to 27 MeV [10].

3.1.2. b. Spectral Function

The spectral function that we use has been obtained from a many-body

calculation with correlated nuclear-state basis together with a realistic nucleon-

nucleon interaction, combined with shell model and local density approximation

[3]. As such, the spectral function is quite realistic and includes all physics rele-

vant to the high-energy lepton-nucleus scattering, especially realistic short-range

nuclear correlations important to large momentum transfers.

Ph(p, ω) is directly related to the spectral function P (p, ω) as

Ph(p, ω) =
1

Ep
P (p, ω) . (4)
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Fig 1. Density plot of spectral function P (p, E) of 16O [3].

In Fig. 1, we illustrate P (p, ω) that have been obtained by O. Benhar et al. [3]

and are used for our oxygen calculations.

3.2. Pp(p, ω): final-state Interactions

We examine various models of Pp(p, ω) that describes the final-state inter-

actions of the knocked-out nucleon with the other nucleons in the nucleus. The

models are:

a. Fermi gas model that includes the simple version of Pauli blocking effects in

the standard form,

and the three models that we use with the spectral function,

b. Plain wave impulse approximation,

c. Modified Pauli blocking, and

d. Optical potential model.
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The first three models, a. – c. are expressed as

Pp(p
′, ω) =

V

E ′
p

np(p
′)δ(E ′

p − ω) , (5)

where E ′
p =

√
p′2 + M2 and p′ = |p′| are the final-state energy and (the magnitude

of) momentum of the (knocked-out) nucleon. Here, we neglect the nuclear binding

energy. np(p
′) is the momentum distribution of the nucleon in the final state, and

takes different forms in different models as described below.

3.2.1. a. Fermi Gas Model: simple Pauli blocking

In the Fermi gas model, np(p
′) is written as

np(p
′) = θ(p′ − PF ) . (6)

Through θ(p′ − PF ), Pp(p, ω) describes Pauli blocking, the knocked-out nucleon

momentum being blocked off when it is less than the Fermi momentum PF .

3.2.2. b. Plain Wave Impulse Approximation

The plain-wave impulse approximation simply ignores the final state in-

teractions. That is, we simply set

np(p
′) = 1 . (7)

3.2.3. c. Modified Pauli Blocking

Here, we apply a more realistic version of Pauli blocking effect through the

use of the nucleon momentum distribution that satisfies a sum rule of Ph(p, ω)

and Pp(p, ω) [12]: ∫
(Ph(p, ω) + Pp(p, ω))ωdω = V , (8)

where V = 1/[(2π)3ρ] for the uniform nuclear matter of the density ρ. Note

that the weighted integration
∫

ωdω instead of the standard
∫

dω in the litera-

ture comes from our definition of Ph(p, ω) and Pp(p, ω) as introduced in Eq. (2).

Because the initial and final momentum density distributions, nh(p) and np(p),

respectively, are related to Ph(p, ω) and Pp(p, ω) as

nh(p) =
1

V

∫
Ph(p, ω)ωdω

np(p) =
1

V

∫
Pp(p, ω)ωdω , (9)
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Fig 2. np(p) for Modified Pauli blocking (solid line), as a function of the momentum,
p, compared with np(p) of the step function form for Fermi gas (dashed line).

we have

np(p) = 1− (2π)3ρ

∫
Ph(p, ω)dω . (10)

ρ is taken to be the average density where the neutrino reaction takes place, and

is set to be 0.4ρ0 in terms of the nuclear matter density ρ0 = 0.16 fm−3. For

this choice, np(p) remains non-negative. Figure 2 shows np(p) thus constructed

in comparison to the Fermi gas np(p). The small np(p) distribution for p < 100

MeV/c appears because the two plateaus in P (p, E) with the two nearly constant

values of E do not reach p = 0 but spread out and diminish with tails, as shown

in Fig. 1. It is a consequence of the realistic momentum distribution np(p) in

finite nuclei.

3.2.4. d. Optical Potential Model

In this model, the final-state interactions of the knocked-out nucleon are

described with its reactions with the other nucleons in the nucleus as it goes out,

through the nucleon-nucleus optical potential. The model can be complicated,

but its simple version yields [13]

Pp(p
′, ω) =

V

E ′
p

W (p′)/π
(ω − E ′

p)
2 + W 2(p′)/4

, (11)

where W (p′) is the imaginary part of the nucleon-nucleus potential, depending

on the momentum (and generally also on the energy) of the knocked-out nucleon.

Here, we take it to be

W (p′) =
1

2
v(p′)ρσNN (p

′) (12)
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Fig 3. Combined cross sections of electron-16O quasi-elastic scattering and quasi-free
∆ resonance production. FG (shown in dash curves) is the use of Fermi gas model;
SF (shown in solid curves) is the use of the spectral function with no final-state
interaction (i.e. in plain wave impulse approximation); and SF+FSI(d) (shown in
dot curves) is the use of the spectral function with the final state interaction of
optical potential. The (e, e′) experimental data [11] are shown for comparison.

in the lowest-order approximation of the optical potential. Here, v(p′) is the

velocity of the knocked-out nucleon with the momentum p′. As a simple evalua-

tion, we set the nucleon density, ρ, to be that of the nuclear matter, ρ0, and the

nucleon-nucleon cross section, σNN , to be 40 mb. ρ depends on the location in the

nucleus, where the neutrino reaction takes place. The values of these quantities,

which are used in the simple expression of W Eq. (12), should be the effective ones

averaged over the relevant variables. W that we use here as a simple evaluation

is thus an overestimate in some degree.

4. Numerical results

4.1. Electron scattering

In Fig. 3 we compare the electron-16O scattering cross sections calculated

in various ways, together with experimental data. The comparison is made for the

kinematical set where the experimental data are available: the scattering angle
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θ = 32◦, and the incident energy E = 0.7, 0.88, 1.08 and 1.2 GeV [11]. The

calculated cross sections are shown for the use of the Fermi gas model and of the

spectral function with no final state interaction (that is, in the plain wave impulse

approximation) and with the final state interaction of the optical potential form.

Each curve of the calculated cross section in the figure is a sum of the

quasi-elastic and quasi-free ∆ production cross sections. Each curve thus consists

of two bumps, that of the quasi-elastic scattering at the low energy side and that

of the quasi-free ∆ production at high energy side, with the two contributions

overlapping between the two bumps.

The figure shows that for the quasi-elastic cross sections, the spectral func-

tion gives a better agreement with the data even without the final state interac-

tion (shown as SF), than Fermi gas model (shown as FG). The Fermi gas model

much overestimates at all energies. When the final state interaction is include in

the spectral function calculation (as the optical potential, shown as SF+FSI), the

agreement with data improves for the incident energy below 1 GeV, but the agree-

ment does not necessarily improve above 1 GeV. The optical potential parameters

used seem to be indeed an overestimate, but such a simple parameterization is

clearly inadequate to describe the energy-dependent behavior and requires a fur-

ther refinement.

At all energies, the quasi-elastic cross sections by the use of the spectral

functions with (SF+FSI) and without (SF) the final state interaction have tails

at higher energy transfers, while the Fermi gas cross section (FG) does not. The

appearance of the tails is a consequence of the large momentum components

in the nucleon momentum distribution, which is generated by the short-range

correlations.

At the energy region higher than the quasi-elastic scattering, all calcu-

lated cross sections are below the data. In our calculation, we have included the

contribution from the quasi-free ∆ production but not the contributions from the

non-resonant pion production, which are known to be appreciable. Inclusion of

these contributions is our future study, together with the final state interactions

of the pions produced.

4.2. Neutrino scattering

We have applied the various forms of nuclear effects also to neutrino scat-

tering under different kinematical conditions. Here, we focus on the momentum-

transfer dependence of the neutrino cross section, especially at the small momentum-

transfer region near the forward direction. The region is of current interest be-

cause the coherent scattering contribution experimentally determined appears to

be much less than the expected in this region, as reported in this workshop [14].
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Fig 4. 16O(νµ, µ−) quasi-elastic cross section as a function of square of the momentum
transfer Q2 for the neutrino incident energy E = 0.8 GeV. The Fermi gas model is
shown as a dash curve (FG), and three different versions of the spectral function
model are shown as: with no final state interaction as a solid curve (SF), with the
final state interaction of the simple Pauli blocking (the same as that in the Fermi
gas model) as a dot curve (SF+PB), and with the final state interaction of the
modified Pauli blocking as a dot-dash curve (SF+MPB).

In Fig. 4, we show 16O(νµ, µ−) quasi-elastic cross section calculated in

various ways, as a function of the four-momentum square, Q2. In the figure,

we also include the cross sections for the spectral function model combined with

np(p
′) of the simple Pauli blocking Fermi gas model (shown as SF+PB) and with

np(p
′) of the modified Pauli blocking (shown as SF+MPB).

At small Q2, the figure shows that the spectral function model without the

final state interaction (SF) fails to show a depression in the small Q2 region, while

all other models do show it. All other models include the Pauli blocking effects in

the final state interaction, and the Pauli blocking effects are thus responsible for

the reduction of the cross section near the forward direction. The simple Pauli

blocking of the step function form Eq. (6) provides a stronger depression (as seen

in FG and SF+PB) than the modified Pauli blocking (SF+MPB).

Figure 4 illustrates the importance of the realistic evaluation of the Pauli

blocking effect in the final state interactions and also the usefulness of our ap-

proach in the neutrino-nucleus scattering. The calculation can be tested by the

electron scattering data taken recently with Carbon target at 1.2 GeV [15].
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5. Conclusions

We have calculated electron-nucleus cross sections over the incident energy

range of 700 – 1200 MeV by using various forms of nuclear effects in the initial and

final states of the neutrino interaction in the nucleus. Comparison of the calcu-

lated cross sections with the experimental data shows that the use of the spectral

function yields much more realistic cross sections than the Fermi gas model does,

the latter failing to describe some of important features. The application of our

examination is expected to have a good promise in the application to neutrino

scattering.
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