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Abstract

Subleading 3ν effects in atmospheric ν oscillations (including those induced

by nonzero δm2 = m2
2 − m2

1 at any value of θ13) have been considered long ago,

but only recently the Super-Kamiokande (SK) data have started to show some

weak sensitivity to them, sparking an increasing theoretical and experimental

interest. I discuss some selected (analytical, numerical, and statistical) topics

related to such subleading effects, which might help their understanding in future

atmospheric ν searches characterized by higher statistics and smaller systematics.

1. Introduction and notation

In this contribution to the Workshop (mainly based on recent work done

in collaboration with G.L. Fogli, A. Marrone, A. Palazzo [1], and on earlier work

with G.L. Fogli, D. Montanino [2], and G. Scioscia [3]) I briefly discuss the follow-

ing issues related to subleading effects in atmospheric three-neutrino oscillations:

Old phenomenological results (Sec. 2), Recent phenomenological results (Sec. 3),

Analytical expectations (Sec. 4), Numerical examples (Sec. 5), Systematic uncer-

tainties (Sec. 6). Hereafter, for simplicity, the mixing matrix U is taken real, i.e.,

the CP violating phase δ is assumed to be either 0 or π:

UCP =


 c13c12 s12c13 ±s13

−s12c23 ∓ s23s13c12 c23c12 ∓ s23s13s12 s23c13

s23s12 ∓ s13c23c12 −s23c12 ∓ s13s12c23 c23c13


 , (1)

where the upper (lower) sign refers to δ = 0 (δ = π). The two cases are formally

related by the replacement s13 → −s13. Here, sij = sin θij and cij = cos θij .

Concerning the squared mass differences, the smallest one (“solar”) is defined as

δm2 = m2
2 − m2

1 > 0 (2)

while the other one (“atmospheric”) is formally defined as [1]

∆m2 =

∣∣∣∣m2
3 −

m2
1 + m2

2

2

∣∣∣∣ . (3)
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The squared mass matrix is then

M2 =
m2

2 + m2
1

2
1 + diag

(
−δm2

2
, +

δm2

2
,±∆m2

)
, (4)

where the upper (lower) sign refers to normal (inverted) hierarchy [1].

Within such conventions, the parameter space for atmospheric 3ν oscilla-

tions is (±∆m2, θ23, θ13 | δm2, θ12); however, the last two parameters are ineffective

in the frequently-used limit δm2/∆m2 → 0 (one-mass-scale dominance).

It is useful to remind that matter effects [4] are typically (but not nec-

essarily) relevant when the term A(x) = 2
√

2GF Ne(x)E is of the same order of

either ∆m2 or δm2. Numerically, this condition corresponds to either

A

∆m2
� 1.3

(
2.4 × 10−3 eV2

∆m2

)(
E

10 GeV

)(
Ne

2 mol/cm3

)
∼ O(1) , (5)

which can occur in the SK samples [5] of multi-GeV, stopping muon, and τ -

appearance neutrino events, or

A

δm2
� 3.8

(
8.0 × 10−5 eV2

∆m2

)(
E

1 GeV

)(
Ne

2 mol/cm3

)
∼ O(1) , (6)

which can occur in the SK samples of sub-GeV events and of atmospheric back-

ground to supernova relic ν, as well as in low-energy (sub-GeV) long-baseline

accelerator ν events in K2K [6]. The electron density Ne is ∼ 2 (∼ 5) mol/cm3

in the Earth’s mantle (core). With the previous notation, notice that [1]

+A(x) → −A(x) flips (anti)neutrinos , (7)

+∆m2 → −∆m2 flips hierarchy , (8)

+s13 → −s13 flips CP parity . (9)

2. Archeo-phenomenology

Since δm2 � ∆m2, one can naturally separate two classes of experiments:

(1) those mainly sensitive to δm2 (solar, long-baseline reactor), and (2) those

mainly sensitive to ∆m2 (atmospheric, long-baseline accelerator, short-baseline

reactor). As a 0th-order approximation, one can take ∆m2 = ∞ in the first case,

and δm2 = 0 in the second case (one-dominant-mass-scale approximation).

Subleading corrections to this simplified picture (in order to account for

both mass scales, δm2 and ∆m2, at the same time) were considered long ago. E.g.,

one can already find in a classic review [7] both the subdominant δm2-correction

to the effective mixing angle θ̃13 in matter,

sin 2θ13

sin 2θ̃13

�

√√√√( A

∆m2 + δm2

2
cos 2θ12

− cos 2θ13

)2

+ sin2 2θ13 , (10)
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Fig 1. Results extracted (for θ13 = 0) from an early analysis [2] of solar neutrino data
(left panel) and atmospheric neutrino data plus reactor constraints (right panel), in-
cluding both mass scales δm2 and ∆m2n. Thin lines: 0th-order results in δm2/∆m2

(one-mass-scale approximation). Thick lines: Two-mass-scale results. The differ-
ence is graphically visible only for the atmospheric allowed region. Translation from
old [2] to current notation: (m2

2,m
2
3) → (δm2,∆m2) and (ω, φ, ψ) → (θ12, θ13, θ23).

and the subdominant ν3-correction to the effective mixing angle θ̃12 in matter,

sin 2θ12

sin 2θ̃12

�
√(

Ac2
13

δm2
− cos 2θ12

)2

+ sin2 2θ12 . (11)

as well as the two-mass-scale corrections to the effective squared mass eigenvalues

in matter: m̃2
i = m̃2

i (δm
2, ∆m2, θ12, θ13, A), valid for A = const [7].

In the general case A = A(x), two-mass-scale corrections must be imple-

mented numerically; e.g., atmospheric neutrinos must be evolved through suc-

cessive Earth shells with flavor-conserving conditions at the shell boundaries. An

early numerical analysis of solar and atmospheric neutrino oscillation phenomenol-

ogy, taking into account both scales (δm2 and ∆m2) was presented in [2], where

it was shown that the corrections to the zeroth-order approximation in the small

parameter δm2/∆m2 were modest in all cases of interest, and for any value of

θ13. Figure 1, extracted from [2] for the particular case θ13 = 0, shows that the

difference was not graphically visible for the high-δm2 solar neutrino solutions al-

lowed at that time (including the currently “true” solution at large mixing angle,

LMA), and produced a very modest shift towards smaller θ23 angles for the atmo-

spheric neutrino allowed region. These early features appear to persist in current

phenomenological analyses of up-to-date experimental data [8], as we shall see in

the next section.
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Fig 2. Results extracted (for ∆m2 ≡ m2 = 5.6 × 10−3 eV2) from an early
one-mass-scale analysis of atmospheric neutrino data [3] with unconstrained θ13
in both hierarchies. The x and y axis are spanned by tan2 θ23 ∈ [10−2, 102] and
tan2 θ13 ∈ [10−2, 102], respectively. The differences between the allowed regions in
normal hierarchy (left panel) and inverted hierarchy (right panel) were very small.

Other interesting (and entangled) subdominant effects in atmospheric ν

oscillations are induced by θ13 �= 0 and by our ignorance of the mass hierarchy,

sign(±∆m2) = ±1. Also such effects were considered quite early [3], and unfortu-

nately they remain weak even with improved data and analyses (see [1] and refs.

therein). Figure 2 shows the results of an old analysis of atmospheric ν data [3]

at 0th order in δm2/∆m2 but for unconstrained values of θ13 in both hierarchies.

One can see that the regions allowed at that time did not change significantly

when flipping hierarchy, at any value of θ13. These early features also persist with

current data. Therefore, possible effects of two-mass-scales, of θ13 �= 0, and of ν

hierarchy, definitely require new-generation experiments for their observability.

3. Current phenomenology

In recent years, the interest in two-mass-scale effects in atmospheric neu-

trino oscillations has been especially revived in [9, 10], where the main features of

the effects have been discussed analytically, and where one can also find references

to earlier numerical works. Having entered the era of precision neutrino physics,

it is worthwhile to include systematically such effects which, although small, are

not smaller than others one takes care of (see below). Phenomenological analyses

to up-to-date SK data [8, 1] appear to show, in particular, that δm2 effects in

atmospheric neutrino oscillations tend to shift θ23 slightly below maximal mixing

(i.e., the best-fit is at θ23 < π/4), in order to account for part of the possible

“electron excess” emerging in the sub-GeV SK data sample [8, 1].
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Fig 3. Regions allowed by up-to-date SK and K2K data at 1, 2, and 3 standard
deviations (∆χ2 = 1, 4, 9) in the (∆m2, sin2 θ23) plane, for θ13 = 0 (taken from [1]).
Left panels: SK analysis with δm2 = 0 and 1-dimensional (1D) atmospheric ν flux
input (top), with δm2 = 0 and 3D flux input (middle), and with δm2 = 8 × 10−5

eV2 and 3D input (bottom). Right panels: regions allowed separately by SK data
(top) and K2K data (middle), and by the SK+K2K combination (bottom).

Figure 3 [1] (left panels) shows small effects that are now included in state-

of-the-art analyses of the latest SK data [8, 1] on atmospheric neutrino events.

The middle and top panels differ by the input neutrino fluxes (3D [11] instead of

1D, respectively), which shift ∆m2 by about half-standard-deviation downwards.

The bottom and middle panels differ by the inclusion of δm2 = 8×10−5 eV2 from

the current LMA solution to the solar neutrino problem, whose effects is to shift

sin2 θ23 by about half-standard-deviation downwards. Such effects are small and,

unfortunately, not statistically significant; however, there is no reason to keep the

first and to neglect the second: both should be taken into account in improved

analyses of current data [8, 1] and prospective data [12]. Another small effect on

the shape of the allowed region is provided by the inclusion of the K2K spectral

data [6], which do not alter the bounds on sin2 θ23 but help to strengthen the

upper limit on ∆m2, as shown in the right panels of Fig. 3.

Figure 4 [1] shows that the previous results of the SK+K2K analysis

at θ13 = 0 (Fig. 3) are not significantly altered for unconstrained θ13 (within

CHOOZ reactor constraints [13]), in all the four CP-conserving cases [cos δ =

±1] ⊗ [sign(±∆m2) = ±1]; in particular, the preference for sin2 θ23 < 1/2 at best
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Fig 4. Three-neutrino analysis of SK+K2K+CHOOZ data, including subleading
LMA effects. The results, marginalized with respect to s213, are shown in
the (∆m2, s223) plane for the two hierarchies (left vs right panels) and the two
CP-conserving cases (top vs bottom panels). Contours refer to 1, 2, and 3 σ.

fit seems stable. However, it should be emphasized that such preference is not

statistically significant, and thus it might disappear by including further experi-

mental information. In particular, a preliminary analysis of the SK collaboration

[14] including an optimized data binning and a refined treatment of systematics

[14, 15] seems to find the best fit at sin2 θ23 � 1/2. It is thus unclear if the pref-

erence for sin2 θ23 < 1/2 found here and in [8] will persist in the future, although

the possible electron excess emerging in the current SK low-energy data seems to

justify such preference [1, 8].

4. Analytical expectations

Our calculations of atmospheric ν oscillations are based on a full 3ν nu-

merical evolution. Semianalytical approximations (although not used in the final

results) can, however, be useful to understand the behavior of the oscillation prob-

ability and of some atmospheric ν observables. An important observable is the

excess of expected electron events (Ne) as compared to no oscillations (N0
e ):

∆e ≡ Ne

N0
e

− 1 = (Pee − 1) + r Peµ , (12)

where Pαβ = P (να → νβ), and r is the ratio of atmospheric νµ and νe fluxes

(r ∼ 2 and ∼ 3.5 at sub-GeV and multi-GeV energies, respectively). In fact, this

quantity is zero when both θ13 = 0 and δm2 = 0, and is thus well suited to study

the associated subleading effects (which may carry a dependence on the matter
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density) in cases when δm2 and θ13 are different from zero [9]. In the simplified

case A = const, and using the approximations for the mass-mixing parameters in

matter reported in [7], we get [1] that the electron excess at sub- or multi-GeV

energies can be written as a sum of three terms,

∆e � ∆1 + ∆2 + ∆3 , (13)

∆1 � sin2 2θ̃13 sin2

(
∆m2 sin 2θ13

sin 2θ̃13

L

4E

)
· (rs2

23 − 1) (14)

∆2 � sin2 2θ̃12 sin2

(
δm2 sin 2θ12

sin 2θ̃12

L

4E

)
· (rc2

23 − 1) (15)

∆3 � sin2 2θ̃12 sin2

(
δm2 sin 2θ12

sin 2θ̃12

L

4E

)
· rs13c

2
13 sin 2θ23(tan 2θ̃12)

−1 , (16)

with θ̃13 and θ̃12 defined in Eqs. (10) and (11).

The above expressions for ∆i, which hold for neutrinos with normal hier-

archy and δ = 0, coincide with those reported in [9] (up to higher-order terms

or CP-violating terms, not included here). The corresponding expressions for an-

tineutrinos, for inverted hierarchy, and for δ = π, can be obtained through the

replacements in Eqs. (7), (8), and (9), respectively. Under such transformations:

(1) all ∆i’s are affected by A → −A through θ̃12 or θ̃13; (2) only ∆1 is sensitive

to ∆m2 → −∆m2; (3) only ∆3 is sensitive to +s13 → −s13.

Concerning the dependence on the oscillation parameters, one has that:

(1) all ∆i’s depend on θ23; (2) ∆1 arises for θ13 > 0, and is independent of δm2;

(3) ∆2 arises for δm2 > 0, and is independent of θ13; only ∆3 (“interference term”

[9]) depends on both θ13 and δm2.

Concerning the dependence on energy, in the sub-GeV range one has that:

(1) θ̃13 � θ13, so that for large L the first term is simply ∆1 � 2s2
13c

2
13(rs

2
23 − 1);

(2) since r � 2, the term ∆1 flips sign as s2
23 crosses the maximal mixing value

1/2 [16], and similarly for ∆2 (with opposite sign) [9]; (3) for neutrinos, which

give the largest contribution to atmospheric events, it turns out that tan 2θ̃12 < 0,

and thus typically ∆3 < 0 for δ = 0 (∆3 > 0 for δ = π). In the multi-GeV range

one has that θ̃12 � π/2, so that only ∆1 dominates, with typically positive values

(being r � 3.5 and s2
23 not too different from 1/2).

5. Numerical examples

Figure 5 shows exact numerical examples (extracted from our SK data

analysis [1]) where, from top to bottom, the dominant term is ∆1, ∆2, and ∆3.

The dashed histograms represent theoretical predictions Rn in each zenith bin
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Fig 5. Representative examples of subleading 3ν effects in the sub-GeV and
multi-GeV electron samples (SGe and MGe), as a function of the cosine of the
lepton zenith angle θZ , normalized to no-oscillation expectations in each bin. See
also [1].

while the solid histograms represent the predictions Rn shifted through indepen-

dent systematic uncertainties cnk,

Rn → Rn = Rn +
∑

k

ξk cnk , (17)

whose amplitudes ξk are constrained through a quadratic penalty term, within

the so-called pull approach to the χ2 analysis [17]. Both unshifted and shifted

predictions are normalized to no-oscillation expectations R0
n in each bin. Let us

focus on the dashed histograms in Fig. 5, where we have taken ∆m2 = +2.4 ×
×10−3 eV2 (normal hierarchy); other relevant parameters are indicated at the

right of each panel. In the upper panel, we have set δm2 = 0, so as to switch off

∆2 and ∆3. We have also taken s2
23 = 0.4 < 0.5, so that ∆1 < 0 in the sub-GeV

sample; it is instead ∆1 > 0 in the multi-GeV sample. In the middle panel, we

have set (δm2, sin2 θ12) at their best-fit LMA values, but have taken sin2 θ13 = 0,

so that only ∆2 survives. In particular, while there is no observable effect of ∆2

in the multi-GeV sample (where the energy is relatively high and sin 2θ̃12 � 0),

the effect is positive for sub-GeV neutrinos, where s2
23 = 0.4 < 1/2. Notice that

the upper and middle panel results are insensitive to δ = 0 or π, since ∆3 � 0 in

both cases. Finally, in the bottom plot we have taken s2
23 = 1/2, so as to suppress



27

Fig 6. SK data and predictions for sub-GeV electrons (SGe), multi-GeV electrons
(MGe), sub-GeV muons (SGµ), multi-GeV muons (MGµ), upward stopping muons
(UPµ), upward through-going muons (UTµ). Data are shown by dots with ±1σ
statistical error bars. The histograms represent our calculations at the SK+K2K
best fit in Fig. 3 (dashed: no systematic shifts; solid: systematic shifts allowed).

∆1 and ∆2 is the sub-GeV sample, where ∆3 > 0 for our choice δ = π. In the

multi-GeV sample, however, ∆1 is still operative.

The subleading dependence of atmospheric νe events on the hierarchy,

δm2, θ13, and CP-parity is intriguing and is thus attracting increasing interest.

However, Fig. 5 clearly shows that such dependence is currently well hidden, not

only by statistical uncertainties (vertical error bars) but, more dangerously, by

allowed systematic shifts of the theoretical predictions (solid histograms). For

instance, in the upper panel, systematics can “undo” the negative effect of ∆1 in

the SGe sample and make it appear positive. In all cases, they tend to magnify

the zenith spectrum distortion; this is particularly evident in the right middle

panel, where the unshifted theoretical prediction is flat.

Figure 6 shows the importance of systematics in SK from a global view-

point. The difference between shifted and unshifted predictions is significant, and

even larger than the statistical errors, in seemingly unrelated samples: SG+MG

electrons, and upward through-going (UT) muons. In the latter sample, upward

systematics shifts are strictly needed, since the unshifted predictions are defi-

nitely too low with respect to the data; i.e., since we cannot invoke νµ oscillation

“appearance” to explain the UTµ “excess,” we conclude that it must be due to

systematics. With the same logic, we cannot exclude that the SGe and MGe “ex-

cess” may also be generated by systematics, rather than by the 3ν effects we are

looking for. Therefore, caution is needed in interpreting any (weak) indication of

3ν effect in current SK data, including the slight preference for non-maximal θ23.
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Fig 7. Isolines of the up-down electron asymmetry in the SG and MG samples, nor-
malized to no-oscillation expectations. See the text and Ref. [1] for details.

We think it useful to quantify at which level one has to reduce systematic

uncertainties, in order to appreciate subleading effects in future, larger SK-like

atmospheric neutrino experiments such as those proposed in [18, 19, 20]. Since

normalization systematics are large (as evident from Fig. 6), we prefer to focus

on a normalization-independent quantity, namely, the fractional deviation of the

up-down asymmetry of electron events from their no-oscillation value,

Ae =
U/D

U0/D0
− 1 , (18)

where “up” (U) and “down” (D) refer to the zenith angle ranges cos θz ∈ [−1,−0.4]

and [0.4, 1], respectively. We perform a full numerical calculation of this quantity

for both SGe and MGe events, assuming the SK experimental setting for definite-

ness. Notice that the up-down asymmetry involves the first and last three bins of

the SGe and MGe samples in Fig. 6.

Fig. 7 shows isolines of 100×Ae for the SGe sample (left) and MGe sample

(right) plotted in the (sin2 θ23, sin
2 θ13) plane at fixed ∆m2 = 2.4 × 10−3 eV2, for

both normal hierarchy (+∆m2, left panels) and inverse hierarchy (−∆m2, right

panels). In both hierarchies, we consider first the “academic” case δm2 = 0 (top

panels), then we switch on the LMA parameters (δm2, sin2 θ12) at their best-fit

values, for the the two CP-conserving cases δ = 0 (middle panels) and δ = π

(bottom panels). A thorough discussion of the behavior of the Ae isolines can be
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Fig 8. Isolines of the fractional reduction of the (±2σ) SK allowed range for ∆m2

(left) and for sin2 θ23 (right), as a function of hypothetical fractional reduction of
all statistical errors (x-axis) and of all systematic errors (y-axis).

found in [1]. Here we only emphasize that: (1) in the SGe case, the asymmetry

is typically at the percent or sub-percent level for sin2 θ13 < few%; therefore,

statistical and systematic uncertainties need to be reduced at this extraordinary

small level in order to really “observe” the effects in future atmospheric neutrino

experiments; (2) The MGe asymmetry can be of O(10%) and thus relatively

large; with some luck, such asymmetry might be seen in future large Cherenkov

detectors if θ13 is not too small. In all cases, systematics need drastic reduction.

Dedicated studies are needed [14, 15] to understand which systematic sources

(atmospheric flux, hadronic and leptonic cross section, detector, data analysis)

are most dangerous for the detection of 3ν effects.

6. Is SK limited by systematics?

Dedicated studies of systematic error reduction can also be motivated by

observing that the role of systematics can be counter-intuitive. For instance, since

statistical and systematic errors in Fig. 6 are comparable, one could guess that

the (∆m2, sin2 θ23) parameter estimation would equally benefit from a reduction

of statistical and systematic errors. However, we have performed numerical ex-

periments which show that, formally, it is more important to reduce statistical

errors. In particular, Fig. 8 shows the fractional reduction of the SK allowed range

for ∆m2 (left) and sin2 θ23 (right), when either statistical or systematic errors are

reduced by an overall factor between 1 (current errors) and 0.5 (halved errors).

It can be seen that the parameter estimates (especially for ∆m2) improve faster

by reducing statistical rather than systematic errors. Similar results have been

obtained in [21]. Thus, one might think that SK is not limited by systematics.
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However, this counter-intuitive conclusion might be premature, since it

assumes that we perfectly know all sources of systematics. In terms of the pull

method [Eq. (17)], this means that we are assuming perfect knowledge of all cnk’s,

i.e., of the “response” of any predictions Rn to any systematic source ξk. This

assumption might be too optimistic. The response is never known with infinite

precision, and the cnk have their own uncertainties (“errors of the errors”). For

instance, the response of the zenith distributions in Figs. 5 and 6 to up-down

detector systematics is typically assumed to be linear in cos θZ , but this is just an

empirical assumption: a tolerance for (currently neglected) non-linearities in the

detector response could be envisaged. Although such “second-order” systematic

error sources are not crucial at present, they might become so in the future, if one

really aims at reaching a (sub)percent level for systematic uncertainties, in order

to detect small 3ν effects in atmospheric neutrino experiments.

The statistical techniques needed to deal with the cnk uncertainties (the

“errors of the errors”) are still to be envisaged; perhaps this task will require de-

tailed and massive numerical experiments (i.e., Monte-Carlo simulations of small

variations in the cnk response functions). These subtle points should be kept in

mind when considering the (perhaps optimistic) results of some prospective stud-

ies, where the currently known SK systematics are simply reduced by an arbitrary

factor, with no variation or uncertainty assumed for the cnk’s.

7. Conclusions

Subleading three-flavor effects in atmospheric neutrinos have been studied

for a long time and in different phenomenological aspects. Now we know that

solar neutrinos oscillations are driven by δm2 � 8 × 10−5 eV2, and thus some

δm2-induced 3ν effects must be also present in atmospheric neutrino oscillations

(dominated by ∆m2 ∼ 2.4 × 10−3 eV2).

Currently, it seems that δm2-induced effects help to fit the electron excess

slightly better (especially in the sub-GeV sample) for non-maximal θ23. But the

statistical significance of this shift from maximality is small, and is not supported

by the SK own analysis. The δm2 effects are also entangled, in general, with other

3ν effects (related to θ13, hierarchy, CP parity).

In both the sub- and multi-GeV samples (and especially in the former),

observation of subleading 3ν effects require drastic error reduction. Reduction

of statistical errors calls for larger detectors; reduction of systematics (on fluxes,

cross-sections, detector) demands dedicated studies, and perhaps new statistical

techniques to deal with subtle effects. The task is challenging, but the observation

of 3ν effects in atmospheric ν experiments would be extremely rewarding.
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