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Abstract

Atmospheric neutrino oscillations are dominantly due to νµ → ντ flavour

mixing. In this workshop we are going to discuss the possibility of observing

sub-leading effects on top of the dominant one at present and future atmospheric

neutrino experiments. In the framework of three-neutrino mixing, such effects

are due to atmospheric νe flavour oscillations arising from the θ13 mixing and/or

from the ∆m2
21-induced oscillation wavelength. Other forms of physics beyond the

Standard Model, such as, for example, the violation of the equivalence principle,

or the violation of Lorentz invariance, can also be a source of sub-dominant atmo-

spheric oscillations. In this talk I will review the basic characteristic features of

these different effects as well as their expected size. Observability of these effects

depends strongly on the assumed experimental and theoretical systematic uncer-

tainties. Thus, this talk is aimed at setting the ground for most of the following

talks and discussions in this workshop.

1. Introduction: Leading ν�→ν� oscillations

As illustration of our present understanding of the dominant source of at-

mospheric (ATM) neutrino oscillations, I start by presenting in Fig. 1 the result of

our 2ν analysis of the ATM neutrino data [1] in terms of νµ ↔ ντ oscillations. The

region is perfectly symmetric around θ = π/4 since for 2-ν νµ → ντ oscillations,

there are no matter effects and the oscillation probability depends on sin2 2θ. The

best fit point occurs at maximal mixing θ = π/4.

This analysis includes the complete 1489-day charged-current data set for

Super-Kamiokande (SK)-I, which comprises the sub-GeV and multi-GeV e-like

and µ-like contained event samples (each grouped into 10 bins in zenith angle), as

well as the stopping (5 angular bins) and through-going (10 angular bins) up-going

muon data events. The calculation of the event rates uses the three-dimensional

ATM neutrino fluxes given in Ref. [2].
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Fig 1. Allowed region for ATM νµ → ντ oscillations.

The statistical analysis applied to the data in order to extract the results in

Fig. 1 is based on the pull method [3] which has become customary to account for

theoretical and experimental systematic uncertainties. In brief the basic idea of

the pull method consists in parametrizing the systematic errors and the theoretical

uncertainties in terms of a set of variables {ξi}, called pulls, which are then treated

on the same footing as the other parameters of the model. The χ2 function takes

the form

χ2 = minξi

[ 55∑
n=1




Rtheo
n −

∑
i

ξiσ
i
n − Rexp

n

σstat
n




2

+
∑

i,theory

ξ2i +
∑
i,syst

ξ2i

]
(1)

where σij is the error in the observable j due to the uncertainty source i. As

illustration, I list here the 18 independent sources of of theoretical and systematic

uncertainties included in this analysis [1].

The theoretical uncertainties include uncertainties in the original ATM

neutrino fluxes and in the cross-sections. In this analysis the uncertainties of the

ATM neutrino fluxes have been parametrized in terms of four pulls: (i) a total

normalization error, which we set to 20%; (ii) a “tilt” factor which parametrizes

possible deviations of the energy dependence of the ATM fluxes from the simple

power law defined as

Φδ(E) = Φ0(E)

(
E

E0

)δ

≈ Φ0(E)

[
1 + δ ln

E

E0

]
(2)

with an uncertainty on the factor δ, σδ = 5% and E0 = 2 GeV; (iii) the uncertainty

on the νµ/νe ratio, which is assumed to be σµ/e = 5%; and (iv) the uncertainty on
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the zenith angle dependence which induces an error in the up/down asymmetry

of events which we conservatively take to be 5%.

Cross section uncertainties have been included in the form of (a) three

independent normalization errors for the different contributions to the inter-

action cross section: quasi-elastic scattering (QE), σ
σQE
norm = 15%, single pion

production(1π), σσ1π
norm = 15%, and deep inelastic (DIS) scattering (also refer to

as multi-pion) σσDIS
norm = 15% for contained events and σσDIS

norm = 10% for upward-

going muons; (b) three errors on the flavour ratios σi,νµ/σi,νe ∼ 0.1–1% which are

relevant only for contained events, and which are much smaller than the total

normalization uncertainties.

Eight sources of experimental systematic uncertainties are included due to:

(i) the simulation of the hadronic interactions σsys
hadron = −0.25–1.1 %; (ii) the par-

ticle identification procedure, σsys
µ/e = −1.1–1.6%; (iii) the ring-counting procedure,

σsys
ring = −0.75–5.5%; (iv) the fiducial volume determination, σsys

f−vol = −0.3–1.4%;

(v) the energy calibration,σsys
E−cal = −0.4–2%; (vi) the relative normalization be-

tween partially-contained and fully-contained events, σsys
PC−nrm = 2.85%; (vii) the

track reconstruction of upgoing muons, σsys
track = 1.4–6.4%; and (viii) the detection

efficiency of upgoing muons, and the stopping-thrugoing separation, σsys
up−eff = 1–

1.4%.

Other analysis in the literature, including the one from the SK collabo-

ration, include these uncertainties in similar manner, although they differ in the

exact size and form of the assumed uncertainties. As we will see in the next talks,

this can lead to differences on the possible observability of the sub-leading effects.

2. Three-Neutrino Oscillations

The minimum joint description of ATM, K2K, solar and reactor data re-
quires that all the three known neutrinos take part in the oscillations. The mixing
parameters are encoded in the 3 × 3 lepton mixing matrix which can be conve-
niently parametrized in the standard form:


 1 0 0
0 c23 s23
0 −s23 c23





 c13 0 s13e

iδ

0 1 0
−s13e

−iδ 0 c13





 c21 s12 0

−s12 c12 0
0 0 1




where cij ≡ cos θij and sij ≡ sin θij . There are two possible mass orderings, which

we denote as Normal and Inverted. In the normal scheme m1 < m2 < m3 while

in the inverted one m3 < m1 < m2.

From the analysis of solar and ATM oscillations we know that

∆m2
� = ∆m2

21 � |∆m2
31|  |∆m2

32| = ∆m2
atm . (3)
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Generic 3-ν oscillation effects which could be observable in ATM neutrino data

include:

– effects due to the mixing angle θ13;

– difference between Normal and Inverted schemes;

– coupled oscillations with two different wavelengths;

– CP violation

The strength of these effects is controlled by the values of the ratio of mass

differences ∆m2
21/|∆m2

31|, by the mixing angle θ13, and by the CP phase δ.

In order to quantify these effects one needs to obtain the oscillation prob-

abilities for ATM neutrinos by solving the evolution equation of the neutrino

system in the matter background of the Earth:

i
d�ν

dt
= H �ν, H = U ·Hd

0 · U † + V , (4)

where �ν ≡ (νe, νµ, ντ )
T , Hd

0 is the vacuum hamiltonian,

Hd
0 =

1

2Eν
diag

(−∆m2
21, 0,∆m2

32

)
, (5)

and V is the effective potential that describes charged-current forward interactions

in matter:

V = diag
(
±
√

2GFNe, 0, 0
)
≡ diag (Ve, 0, 0) . (6)

In Eq. (6), the sign + (−) refers to neutrinos (antineutrinos), and Ne is electron

number density in the Earth.

2.1. Effects due to θ13

I will discuss first the sub-leading effect due to the mixing angle θ13. For

ATM neutrinos, they are particularly easy to treat in the hierarchical approxi-

mation in which ∆m2
21-induced oscillations are neglected in the ATM neutrino

analysis. In this approximation one can rotate away the angle θ12 and the re-

sulting survival probabilities do not depend on ∆m2
21 and θ12. For instance for

constant Earth matter density they can be written as follows [4]:

Pee = 1 − 4s213,mc213,m S31, Peµ = 4s213,mc213,ms223 S31, (7)

Pµµ = 1 − 4s213,mc213,ms423 S31 − 4s213,ms223c
2
23 S21 − 4c213,ms223c

2
23 S32.

Here θ13,m is the effective mixing angle in matter:

sin 2θ13,m =
sin 2θ13√

(cos 2θ13 − 2EνVe/∆m2
32)

2 + (sin 2θ13)2
, (8)
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Sij = sin2
(
∆µ2

ij

4Eν
L
)

are the oscillating factors in matter, and ∆µ2
ij are the effective

mass-squared differences in matter:

∆µ2
31 =

∆m2
32

2

(
sin 2θ13

sin 2θ13,m
− 1

)
−EνVe ,

∆µ2
32 =

∆m2
32

2

(
sin 2θ13

sin 2θ13,m
+ 1

)
+ EνVe,

∆µ2
31 = ∆m2

32

sin 2θ13
sin 2θ13,m

. (9)

The main effect of θ13 is that now ATM neutrinos can oscillate simultaneously in

both the νµ → ντ and νµ → νe (and, similarly, νe → ντ and νe → νµ) channels.

The oscillation amplitudes for channels involving νe are controlled by the size of

sin2 θ13 = |Ue3|2. Furthermore, because of matter effects the size of the effect is

different for normal and inverted hierarchies.

In Fig. 2 we show the expected zenith angular distribution of contained e-

like events (normalized to the no-oscillation expectation) for sin2 θ13 = 0.04. The

results in the figure can be understood as follows. From Eq.(7) we find that for the

case of constant matter density the expected flux of νe events in the hierarchical

approximation is [5, 6, 7]

Ne

Ne0

− 1 = P eµr̄(s
2
23 −

1

r̄
) . (10)

P eµ is the corresponding probability, averaged over energy and zenith angle, and

r̄ = Nµ0/Ne0 where Ne0 and Nµ0 are the expected number of electron and muon-

like events in the absence of oscillations in the relevant energy and angular bin. For

example, for sub-GeV events, r̄ ∼ 2. Eq. (10) illustrates how these effects break

the symmetry around maximal θ23 mixing and have, in principle, the potentiality

to discriminate the octant of θ23.

As seen in the figure, the effect is mostly relevant for multi-GeV events,

for which matter effects lead to an enhancement [5, 6, 7, 8] which is slightly

larger for the normal ordering where the matter enhancement is in the neutrino

channel. For sub-GeV events, the matter term can be neglected and the effect of

a non-vanishing θ13 is smaller and it is the same for normal and inverted ordering.

Furthermore, due to the (s223− 1
r̄
) factor, for θ23 in the first (second) octant there is

a decrease (increase) in the number of electron events as compared to the θ13 = 0,

and the effect is suppressed for maximal θ23 mixing.

From the previous discussion we conclude that the slight excess of sub-GeV

over multi-GeV e-like events, which seems to be observed in the data, cannot be

explained by a non-vanishing θ13. Indeed the best fit occurs for very small θ13
(sin2 θ13 < 0.005) and maximal θ23.



6

-1 -0.5 0 0.5 1
0.8

0.9

1

1.1

1.2

1.3

N
e / 

N
e0

SK sub-GeV (e)

Normal

-1 -0.5 0 0.5 1
0.8

0.9

1

1.1

1.2

1.3

SK sub-GeV (e)

Inverted

-1 -0.5 0 0.5 1

cos θ

0.8

0.9

1

1.1

1.2

1.3

N
e / 

N
e0

SK multi-GeV (e)

Normal

-1 -0.5 0 0.5 1

cos θ

0.8

0.9

1

1.1

1.2

1.3

SK multi-GeV (e)

Inverted

Fig 2. Comparison of the sub-leading effects due to ∆m2
21- and θ13-induced νe os-

cillations in the expected zenith angular distribution of e-like events. In all curves
tan2 θ12 = 0.42, and ∆m2

32 = 2.2× 10−3 eV2.

2.2. Effects due to ∆m2
21

I next discuss the sub-leading effects due to ∆m2
21 oscillations for vanishing

small value of θ13. In this approximation and for constant Earth matter density

the relevant oscillation probabilities can be written as:

Pee = 1 − Pe2 , Peµ = c223Pe2 ,

Pµµ = 1 − c423Pe2 − 2s223c
2
23

[
1 −

√
1 − Pe2 cos φ

]
, (11)

where

Pe2 = sin2 2θ12,m sin2

(
∆m2

21 L

4Eν

sin 2θ12
sin 2θ12,m

)
, (12)

with

sin 2θ12,m =
sin 2θ12√

(cos 2θ12 ∓ 2EνVe

∆m2
21

)2 + sin2 2θ12
(13)

φ ≈ (∆m2
31 + s212 ∆m2

21)
L

2Eν
. (14)

In Fig. 2 I show the angular distribution of ATM νe for non-vanishing values

of ∆m2
21. As seen in the figure, unlike for θ13 �= 0, the main effect of a small but
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non-vanishing ∆m2
21 is mostly observable for sub-GeV electrons. The effect can

be understood in terms of the approximate analytical expressions [7, 9, 10]:

Ne

Ne0
− 1 = P e2r̄(c

2
23 −

1

r̄
) , (15)

Nµ −Nµ(∆m2
21 = 0)

Nµ0
= −P e2c

2
23(c

2
23 −

1

r̄
) , (16)

where Ne0 and Nµ0 are the expected number of electron and muon-like events in

the absence of oscillations in the relevant energy and angular bin and Nµ(∆m2
21 =

0) is the expected number of muon-like events for ∆m2
21 = 0. For sub-GeV events,

for which which for ∆m2 � 2EνVe:

Pe2 = sin2 2θ12

(
∆m2

21

2EνVe

)2

sin2 VeL

2
. (17)

According to Eqs. (15) and (16) the sign of the shift in the number of predicted

events is opposite for electron and muon-like events and it depends on the factor

c223 − 1
r̄
(∼ c223 − 0.5 for sub-GeV events). So for θ23 in the first octant, c223 >

0.5, there is an increase (decrease) in the number of electron (muon) events as

compared to the ∆m2
21 = 0 case, while for θ23 in the second octant the opposite

holds – just opposite to the behavior for θ13 �= 0. We also see that the net shift

is larger for electron events than for muon events by a factor c223/r̄. In summary,

for sub-GeV electrons, the shift in the expected number of events is proportional

to the deviation of θ23 from maximal mixing and to (∆m2
21)

2, it is very weakly

dependent on the zenith angle, and it decreases with the energy.

The present data may already give some hint of deviation of the 2-3 mixing

from maximal. Indeed, there is some excess of the e−like events in the sub-GeV

range. The excess increases with decrease of energy within the sample as expected

from a ∆m2
21 effect. To illustrate this I show in Fig. 3 the results of the global

analysis of ATM and CHOOZ data in the framework of 3ν oscillations taking into

account also the effect of ∆m2
21 oscillations [10].

From the figure we see that, even with the present uncertainties, the ATM

data has some sensitivity to ∆m2
21 oscillation effects and that these effects break

the symmetry in θ23 around maximal mixing. Although statistically not very

significant, this preference for non-maximal 2-3 mixing is a physical effect on the

present neutrino data, induced by the fact than an excess of events is observed

in sub-GeV electrons but not in sub-GeV muons nor, in the same amount, in the

multi-GeV electrons. As a consequence, this excess cannot be fully explained by

a combination of a global rescaling and a “tilt” of the fluxes within the assumed

uncertainties.
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Fig 3. Effect of ∆m2
21 oscillations on the allowed regions of the oscillation param-

eters ∆m2
31 and sin2 θ23 from the combined analysis of all the ATM and CHOOZ

data samples. In the lower panels we show the dependence of the χ2 function on
θ23, marginalized with respect to ∆m2

31. Hollow and dashed black lines are for
∆m2

21 = 0. In all curves tan2 θ12 = 0.42

2.3. Interference of θ13 and ∆m2
21 effects

Finally I would like to make some brief comment on the possible effects

due to the interference between θ13- and ∆m2
21-induced oscillations [7, 11] which

could give sensitivity to the CP violating phase δ. This effect is most important

for sub-GeV energies for which one can write:

Ne

N0
e

−1  Pe2r(c
2
23−

1

r
)+2s̃213r(s

2
23−

1

r
)−rs̃13c̃

2
13 sin 2θ23(cos δ R2− sin δI2) (18)

where

Pe2 = sin2 2θ12,m sin2 φm
2

θ̃13 ≈ θ13

(
1 +

2EνVe
∆m2

32

)
(19)

R2 = −sin 2θ12,m cos 2θ12,m sin2 φm
2

I2 = −1

2
sin 2θ12,m sinφm

φm is the phase oscillation in matter and θ12,m is 12 the mixing angle in matter

(Eq. (13)). Fig. 4 illustrates the possible size of this effect.
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Fig 4. Sub-leading effect due to the interference of ∆m2
21- and θ13-induced νe oscilla-

tions in the expected zenith angular distribution of e-like events. The curves are for
CP phase given in the figure and sin2 θ13 = 0.04, sin2 θ23 = 0.35, tan2 θ12 = 0.42,
∆m2

21 = 1× 10−4 eV2 and ∆m2
32 = 2.2× 10−3 eV2.

3. Sensitivity of Future Experiments to ∆m2
21 Oscillations

I now summarize our results of Ref. [10] on the expected sensitivity at

future ATM experiments. For concreteness we assumed a SK-like detector with

either 20 (SK×20) or 50 (SK×50) times the present SK-I statistics and the same

systematics as SK-I, and we have used the same event samples as in SK.

First we simulate the signal according to the expectations from some spe-

cific choice of the “true” values of parameters which we denote by ω

ω ≡ (∆m2
21, ∆m2

31, θ12, θ13, θ23) , (20)

and then we construct

χ2
sk(∆m2

21, ∆m2
31, θ12, θ13, θ23 |ω) (21)

assuming 20 or 50 times the present SK statistics and three choices for the theo-

retical and systematic errors.

(A) same theoretical and systematic errors as in present SK;

(B) same systematic errors as in present SK, but no theoretical uncertainties;

(C) neither theoretical nor systematic uncertainties (perfect experiment).

Next, in order to study the effect that non-zero values of ∆m2
21 and θ12 can
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produce in the determination of the ATM parameters ∆m2
31 and θ23 we define

χ2
atm+reac(∆m2

31, θ23 |ω) ≡ min∆m2
21,θ13

[
χ2
sk(∆m2

21, ∆m2
31, θ12 = θ12, θ13, θ23 |ω)

+χ2
chooz(∆m2

21, ∆m2
31, θ12 = θ12, θ13 |ω) +

(
∆m2

21−∆m2
21

σ
∆m2

21

)2]

(22)

where we minimize with respect to the solar and reactor parameters ∆m2
21 and θ13

and we keep only the explicit dependence on the parameters ∆m2
31 and θ23. The

assumption θ12 = θ12 is made for purely practical reasons because a complete scan

of the whole five-dimensional parameter space requires too much computer time.

Note that regardless of the specific assumptions on the ‘true values’ ∆m2
21 and θ13

the parameters ∆m2
21 and θ13 are allowed to vary in our fit. In the definition of

χ2
atm+reac in Eq. (22) we have included also the CHOOZ experiment χ2

chooz in order

to have a realistic bound on θ13. Similarly, the term [(∆m2
21 − ∆m2

21)/σ∆m2
21

)]2

accounts for the bound on ∆m2
21 which is expected from KamLAND in the next

few years. We have assumed that by then ∆m2
21 will be known with an uncertainty

of 3% at 1σ.

As an illustration of the expected sensitivity from future ATM neutrino

experiments, we show in Fig. 5 the allowed regions obtained from χ2
atm+reac as-

suming 20 times the present SK statistics and the same theoretical and sys-

tematic errors as in present SK (case A). For definiteness, we choose θ13 = 0,

∆m2
21 = 8.2×10−5 eV2 and tan2 θ12 = 0.42, and we scan different values of ∆m2

31

and θ23. From this figure we find that:

– future ATM neutrino experiments can observe and measure deviations of θ23
from maximal mixing, provided that θ23 is not too close to 45◦: sin2 θ23 <

0.38 or sin2 θ23 > 0.60; future reduction in the theoretical errors will further

improve the sensitivity;

– they can discriminate between the “light-side” and “dark-side” for θ23, i.e.,

they are sensitive to the octant of θ23.

In order to quantify the sensitivity of a future ATM experiment to devia-

tion for maximal θ23 mixing, we have constructed the following function:

∆χ2
no−max(ω) ≡ min

∆m2
31,θ23

[
χ2
atm+reac(∆m2

31, θ23 = 45◦ |ω)−χ2
atm+reac(∆m2

31, θ23 |ω)
]

(23)

where χ2
atm+reac(∆m2

31, θ23 |ω) is given in Eq. (22). In Fig. 6 we plot the depen-

dence of ∆χ2
no−max on ∆m2

31 and θ23, for both ∆m2
21 = 8.2 × 10−5 eV2 (colored

regions) and ∆m2
21 = 0 (hollow regions). We take tan2 θ12 = 0.42 and θ13 = 0.

The blue, green and yellow regions correspond to ∆χ2
no−max > 1, 4 and 9, respec-

tively. In other words, in Fig. 6 we display, for each value of ∆m2
31, the range of
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Fig 5. Allowed regions (at 90%, 95%, 99% and 3σ C.L.) of oscillation parameters
∆m2

13 and sin2 θ23 expected from an ATM neutrino experiment with 20 times the
present SK statistics and the same theoretical and systematic errors as in present
SK. For definiteness, we choose θ13 = 0, ∆m2

21 = 8.2×10−5 eV2 and tan2 θ12 = 0.42,
and we scan different values of ∆m2

31 and θ23. We also include the constraints from
the CHOOZ experiment, as well as the sensitivity to ∆m2

21 expected after 3 years
of KamLAND data (Eq. (22)). The undisplayed parameters ∆m2

21 and θ13 are
marginalized.

θ23 for which the simulated signal can be reconstructed as having maximal θ23 at

1, 2 and 3 σ. The white region corresponds to the the range of θ23 for which the

simulated signal cannot be distinguished from maximal θ23 at 1σ.

In summary we find that the sensitivity of ATM neutrino data to de-

viations from maximal mixing for large values of ∆m2
31 is comparable to what

can be expected “after ten years” from LBL experiments according to Ref. [12],

D23 ≤ 0.050 (0.069) at 90% (3σ) CL. Furthermore, for small values of ∆m2
31 the

ATM neutrino studies are much more sensitive than LBL experiments, which lose

sensitivity very fast when ∆m2
31 ≤ 2 × 10−3 eV2 while the bound which can be

obtained from the ATM neutrino data is practically independent of the value of



12

1

2

3

4

5

∆m
2 31

 [1
0-3

 e
V

2 ]

(A) Theo+Sys+Stat (B) Sys+Stat (C) Stat only

S
K

 x 20

0.3 0.4 0.5 0.6 0.7

sin
2 θ23

1

2

3

4

5

∆m
2 31

 [1
0-3

 e
V

2 ]

0.3 0.4 0.5 0.6 0.7

sin
2 θ23

0.3 0.4 0.5 0.6 0.7

sin
2 θ23

S
K

 x 50
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∆m2
31.

The comparison among the left, central and right panels of Fig. 6 also

shows that the sensitivity of ATM neutrino data to deviations from maximal

mixing improves considerably if theoretical errors on the ATM fluxes and cross

sections are reduced. On the contrary setting to zero the systematic uncertainties

induce a smaller improvement. This implies that the obtained results hold even if

the future ATM neutrino experiment is affected by somewhat larger systematics

than the present SK detector has.

We also see that, as expected, when ∆m2
21 �= 0 the ranges of θ23 can be

asymmetric. This effect is mostly seen in the first two panels (cases A and B)

because larger errors allow for larger values of D23. We find that the overall effect

of the theoretical errors is such that the fit for maximal mixing is “less-bad” if an

excess of e-like sub-GeV events is observed as compared to the observation of a

deficit, while for systematic uncertainties the opposite holds.

In any case, comparing the solid (obtained with ∆m2
21 = 8.2 × 10−5 eV2)

and the hollow (obtained with ∆m2
21 = 0) regions in Fig. 6 we see that the value

of the solar mass splitting is not the most important effect in the discrimination

from maximal mixing, and the bound comes mainly from muon data. Only when

both theoretical and systematic uncertainties are neglected (case C) the bound

on D23 becomes visibly sensitive to ∆m2
21. This occurs because the effect of a

non-zero value of ∆m2
21 is comparable to the small statistical error so this small
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effect is relevant only when the fit is purely statistics-dominated.

In general, the sub-dominant ∆m2
21 effect is mostly important to determine

the octant of θ23. For example for SK×50 the octant of θ23 can be determined at

90% CL if

sin2 θ23 ≤ 0.42 [θ23 ≤ 40◦] or sin2 θ23 ≥ 0.57 [θ23 ≥ 49◦] (A)

sin2 θ23 ≤ 0.48 [θ23 ≤ 43◦] or sin2 θ23 ≥ 0.52 [θ23 ≤ 46◦] (B)

sin2 θ23 ≤ 0.49 [θ23 ≤ 44.4◦] or sin2 θ23 ≥ 0.51 [θ23 ≤ 45.6◦] (C)

These results are almost independent of the exact value of ∆m2
31 within the present

ATM region. From

4. New Physics Effects in Atmospheric Neutrino Oscillations

Oscillations are not the only possible mechanism for ATM νµ → ντ flavour

transitions. These can also be generated by a variety of nonstandard neutrino

physics characterized by the presence of an unconventional interaction (other

than the neutrino mass terms) that mixes neutrino flavours. Examples include

violations of the equivalence principle (VEP) [13, 14], non-standard neutrino in-

teractions with matter [15], neutrino couplings to space-time torsion fields [16],

violations of Lorentz invariance (VLI) [17, 18] and of CPT symmetry [19, 20, 21].

From the point of view of neutrino oscillation phenomenology, a critical feature of

these scenarios is a departure from the λ ∝ E dependence of the conventional os-

cillation wavelength. Although these scenarios no longer explain the data[22, 23],

a combined analysis of the ATM neutrino and K2K data can be performed to

obtain the best constraints to-date on the size of sub-dominant oscillation ef-

fects [22, 1].

We concentrate on new physics (NP) effects affecting νµ–ντ flavour mixing

with a strength which is constant along the neutrino trajectory. In this case the

oscillation probabilities of neutrinos (+) and antineutrinos (−) take the form [20]:

Pνµ→νµ = 1 − Pνµ→ντ = 1 − sin2 2Θ sin2

(
∆m2L

4E
R

)
, (24)

with

sin2 2Θ = 1
R2

(
sin2 2θ + R2

n sin2 2ξn + 2Rn sin 2θ sin 2ξn cos ηn
)
,

R =
√

1 + R2
n + 2Rn (cos 2θ cos 2ξn + sin 2θ sin 2ξn cos ηn) ,

Rn = σ+
n

∆δnEn

2
4E
∆m2 .

(25)

∆m2 is the mass-squared difference between the two neutrino mass eigenstates,

σ±
n accounts for a possible relative sign of the NP effects between neutrinos and
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antineutrinos, and ∆δn parametrizes the size of the NP terms. θ is the mass-

flavour mixing angle and ξn is the NP-flavour mixing angle and ηn is the possible

non-vanishing relative phase. We have assumed scenarios with one NP source

characterized by a unique ∆δn.

Eq. (24) describes, for example, flavour oscillations due to new tensor-

like interactions for which n = 1, leading to a contribution to the oscillation

wavelength inversely proportional to the neutrino energy. This is the case for

νµ and ντ ’s of different masses in the presence of violation of the equivalence

principle (VEP) due to non- universal coupling of the neutrinos, γ1 �= γ2 (ν1
and ν2 being related to νµ and ντ by a rotation ξvep), to the local gravitational

potential φ [13, 14].

For constant potential φ, this mechanism is phenomenologically equivalent

to the breakdown of Lorentz invariance resulting from different asymptotic values

of the velocity of the neutrinos, c1 �= c2, with ν1 and ν2 being related to νµ and

ντ by a rotation ξvli [17, 18].

For vector-like interactions, n = 0, the oscillation wavelength is energy-

independent. This may arise, for instance, from a non-universal coupling of the

neutrinos, k1 �= k2 (ν1 and ν2 is related to the νµ and ντ by a rotation ξQ), to a

space-time torsion field Q [16]. Violation of CPT resulting from Lorentz-violating

effects such as the operator, ν̄αLb
αβ
µ γµν

β
L, also lead to an energy independent contri-

bution to the oscillation wavelength [19, 20, 21] which is a function of the eigenval-

ues of the Lorentz violating CPT-odd operator, bi, and the rotation angle, ξ �CPT,

between the corresponding neutrino eigenstates νi and the flavour eigenstates να.

The flavour oscillations of ATM νµ’ s in these scenarios is described by

Eq. (24) with the identification:

ξ1 = ξvep ∆δ1 = 2|φ|(γ1 − γ2) ≤ 1.6 × 10−24 , for VEP

ξ1 = ξvli , ∆δ1 = (c1 − c2) ≡≤ 1.6 × 10−24 , for VLI

ξ0 = ξQ , ∆δ0 = Q(k1 − k2) ≤ 6.3 × 10−23 GeV , for coupling to torsion

ξ0 = ξ �CPT , ∆δ0 = b1 − b2 ≤ 5.0 × 10−23 GeV , for /CPT , VLI
(26)

where for the first three scenarios σ+ = σ− while for the CPT violating case

σ+ = −σ−.

In the left panels of Fig. 7 we illustrate the effect of the presence of the NP

in the ATM neutrino events distributions for ∆m2 oscillations ( ∆m2-OSC) plus

sub-dominant NP effects, for some characteristic values of the NP-parameters. In

all cases Rn is a growing function of E and the NP effects become relevant in the

higher energy samples, in particular for upward going muons.

At present the strongest limits on NP neutrino oscillations arise from the

non-observation of departure from the ∆m2
23 oscillation behaviour in ATM neu-
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Fig 7. Left Zenith-angle distributions (normalized to the no-oscillation prediction)
for the SK µ-like events. The full line gives the distribution for the best fit of
∆m2-OSC, ∆m2 = 2.2 × 10−3 eV2 and sin2 θ = 0.5. The dashed and dotted
lines give the distributions for ∆m2-OSC+NP scenarios for n = 1 and n = 0 with
∆δ1 = 2.0×10−24 and ∆δ0 = 4.2×10−23 GeV respectively. In both cases η = ξ = 0
and the oscillation parameters have been set to their best fit values. Right Allowed
parameter regions for the analysis of ATM and K2K data in presence of νµ → ντ
oscillations and different NP effects as labeled in the figure. Each panel shows a
two-dimensional projection of the allowed five-dimensional region after marginal-
ization with respect to the three undisplayed parameters. The different contours
correspond to the two-dimensional allowed regions at 90%, 95%, 99% and 3σ CL.
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trinos and SK and the confirmation from K2K.

In the right panels of Fig. 7 we plot two-dimensional projections of the

allowed parameter region for the analysis of ATM and K2K data in presence of

νµ → ντ oscillations and different NP effects.

Several comments are in order. First, from the figures we see that the best

fit point for the global ∆m2-OSC+NP scenarios is always very near the best fit

point of pure ∆m2-OSC. In other words, the data does not show any evidence of

presence of NP even as a sub-dominant effect. Second, the figures illustrate the

robustness of the allowed ranges of mass and mixing derived from the analysis

of ATM and K2K data under the presence of these generic NP effects. Third

the analysis allow us to derive well-defined upper bounds on the NP strength. In

Eqs.(26) we quote the 3σ bounds from this up-to-date combined analysis of SK

and K2K data performed in Ref.[1].

5. Some Final Remarks

In this talk I have presented the basic features of sub-leading effects in

ATM neutrino oscillations due to three-neutrino oscillation effects as well as to

more exotic forms of new physics. We have seen that a high statistics ATM

neutrino experiment can give important information on:

(a) the possible deviation of θ23 from maximal mixing from leading ∆m2
23- and

sub-dominant ∆m2
21- and θ13-induced effects;

(b) the octant of θ23 from sub-dominant ∆m2
21 effects;

(c) the mass ordering from sub-dominant θ13 effects if large;

(d) CP violation from interference of sub-dominant ∆m2
21 and θ13 effects;

(e) new physics effects in neutrino propagation.

I will end this talk with Fig. 8 where I show the results of the ATM neutrino

analysis in terms of leading νµ → ντ oscillations when some of the errors discussed

in the introduction are removed.

Obviously, removing some sources of errors as shown in Fig. 8 is not re-

alistic. The aim of this figure is to illustrate that, even what we know about

the ATM leading neutrino oscillations, relies on the assumed theoretical and ex-

perimental systematic uncertainties. All the sub-leading effects discussed here

modify the leading oscillation results at most at the few percent level. Therefore

their observability depends even more strongly on the precision attainable for the

theoretical and systematic uncertainties which is the subject of most of the talks

and discussions in this workshop.

I want to thank my collaborators on the subject M. Maltoni and A.Y.

Smirnov. I am particularly indebted to M. Maltoni for his help in preparing the
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