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Abstract
In the case of large 1-3 mixing angle as sin2 2θ13 ≥ 0.03, we investigate the

possibility for measuring the leptonic CP phase by using only νµ → νµ oscillations
independently of νµ → νe oscillations. As the result, we find that the CP phase
can be measured best at the energy around E = 0.43GeV and the baseline length
L = 5000km without strongly depending on the uncertainties of other parameters.
In this region, the CP phase effect remains even after averaging over neutrino
energy. We also find that there is a CP sensitivity even in the short baseline
length L ≤ 1000km if ∆m2

31 is determined with the uncertainty of about 0.1%.
In the T2KK experiment, we explore the possibility for measuring the CP phase
assuming 0.1% uncertainty of ∆m2

31. As the result, we find that some information
of the CP phase can be obtained.

1. Introduction
The finite mass of neutrinos and the mixings among different flavors have been

confirmed in various neutrino experiments. The aim of next generation experi-
ments is to explore the 1-3 mixing angle θ13, the sign of ∆m2

31 and the CP phase δ.
One of the turning points is whether θ13 can be determined by the next generation
reactor experiments and superbeam experiments. In the case of sin2 2θ13 ≥ 0.03,
θ13 will be found in the next generation experiments without being affected by the
θ13-δ ambiguity. In such cases, it is suggested that the remaining four-fold degen-
eracies can also be solved within a few decades [1]. In particular, an illuminating
plan with two detectors, so called Tokai-to-Kamioka-Korea (T2KK) experiment,
was proposed in refs. [2]. They investigated the capability of this experiment. As
a result, in the case of large θ13, the mass hierarchy is determined and CP phase
can be also measured. In addition, the precision measurement of other parameters
is possible.

In this talk, we concentrate on the case of sin2 2θ13 ≥ 0.03 and we explore a
new possibility for measuring the CP phase in νµ → νµ oscillations independently
of νµ → νe oscillations based on the works [3, 4]. If we assume the unitarity in
three generations, the channel of νµ → νe oscillations should be related to that of
νµ → νµ oscillations. Therefore, the inconsistency between these channels gives
an evidence of new physics and we will have some constraints to the unified theory
in the high energy physics.

The CP dependence of the probabilities related to the superbeam experiments
are given by

Pµe = Aµe cos δ + Bµe sin δ + Cµe, (1)
Pµµ ' Aµµ cos δ + Cµµ, (2)
Pµτ ' Bµτ sin δ + Cµτ , (3)
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where A, B and C are the function of parameters except for δ [5, 6]. If we assume
the unitarity in three generations, the sum of three probabilities has to be one for
any value of δ. So, we obtain the relations among these coefficients as

Aµe + Aµµ = 0, (4)
Bµe + Bµτ = 0, (5)
Cµe + Cµµ + Cµτ = 1. (6)

It is well known that the order of magnitude for each coefficient is given by

Aµµ = −Aµe = O(αs13), (7)
Bµτ = −Bµe = O(αs13), (8)

Cµe = O(α2) + O(s2
13), (9)

Cµµ = Cµτ = O(1), (10)

where α = ∆m2
21/∆m2

31. Here, we should note that Aµµ is the same order as Aµe.
So, in the case of large θ13, the CP phase effect in νµ → νµ oscillations is not
so small. The observation in this channel may be difficult compared with that in
νµ → νe oscillations because of the large CP independent terms, but there may be
a possibility to detect CP phase effect in νµ → νµ oscillations independently from
νµ → νe oscillations. Accordingly, we can test the unitarity and may be obtain
the clue of new physics.

2. Search for E-L Regions with Large cos δ

In order to investigate the CP phase effect in νµ → νµ oscillations, at first, we
numerically explore the energy E and the baseline length L where Aµµ is large,
without limiting the setup of T2KK. We use the parameters

sin2 θ12 = 0.3, sin2 θ23 = 0.5, sin2 2θ13 = 0.15, (11)

and

∆m2
31 = 2.5× 10−3eV2, ∆m2

21 = 8.1× 10−5eV2. (12)

In fig. 1, |Aµµ| takes large value in black region. So, we found that |Aµµ| becomes
large in the low energy and long baseline length, namely in the region with large
L/E. This region may be explored by the very long baseline experiments or
atmospheric neutrino experiments with large detector. Then, where is the best
point in this region ? Are there any chance to measure the CP phase in short
baseline experiments by using νµ → νµ oscillations ?

In order to investigate the behavior of Aµµ more accurately, we use the approx-
imate formula of Aµµ derived in ref [4] as

Aµµ ' 4Jr∆21(a−∆21 cos 2θ12)
∆̃2

21

sin2 ∆̃′
21

︸ ︷︷ ︸
A1

−4Jr∆21

∆̃21

sin ∆̃′
21 sin(2∆̃′

31 − ∆̃′
21)

︸ ︷︷ ︸
A2

. (13)

Here, Jr = s12c12s23c23s13c
2
13, ∆ij = ∆m2

ij/(2E), a ' 7.56 × 10−5 · ρYe, ρ is the
matter density, Ye is the fraction of electrons, ∆̃ij = λi − λj , ∆̃′

ij = ∆̃ijL/2 and
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Fig. 1 Region with large |Aµµ|. In the black region, the magnitude of |Aµµ| becomes large.

λi is the effective mass of i-th neutrino divided by (2E) given as

λ1 '
∆21 + a−

√
(a−∆21 cos 2θ12)2 + ∆2

21 sin2 2θ12

2
(14)

λ2 '
∆21 + a +

√
(a−∆21 cos 2θ12)2 + ∆2

21 sin2 2θ12

2
(15)

λ3 ' ∆31. (16)

In the derivation of (13), we took the approximation λ1 < λ2 ¿ λ3, a ¿ λ3 and
s2
13 ¿ 1. Then, we have left only leading order terms of small quantities, ∆21, λ1,

λ2 and s13. In order to be a good approximation for the region with large L/E,
we did not neglect the term with the order of O(∆′

21) included in the oscillating
part. In eq.(13), Aµµ is represented as the sum of two terms A1 and A2. A1 is
slowly oscillating term according to the change of energy as controlled by ∆̃′

21.
A2 is rapidly oscillating term as controlled by ∆̃′

31. In the small L/E region, A1
can be neglected and the main contribution comes from A2. As the value of L/E
increases, A1 also gives the contribution and A2 oscillates faster. Therefore, only
A1 remains in the region with sufficiently large L/E and after averaging over the
energy. The total behavior of Aµµ can be described as the oscillation around the
average value determined by A1. The coefficient of sine function in A1 is given by

4Jr∆21(a−∆21 cos 2θ12)
∆̃2

21

=
4Jr∆m2

21(2aE −∆m2
21 cos 2θ12)

(2aE −∆m2
21 cos 2θ12)2 + ∆m4

21 sin2 2θ12

. (17)

If we use the parameters sin2 2θ23 = 1 and sin2 θ12 = 0.31, it is found that the
value of local maximum is given by

Amax
1 =

sin 2θ13

4
sin2

(√
2∆m2

21 sin 2θ12L

4E`

)
(18)
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Fig. 2 Energy dependence of Aµµ and Pµµ. Left and right figures show the magnitude of Aµµ

and Pµµ. In the left figure, grey and black lines represent the magnitudes of Aµµ and A1

respectively. In the right figure, red (grey) and blue (black) lines correspond to δtrue = 0◦
and 180◦.

at the energy

E` =
∆m2

21(cos 2θ12 + sin 2θ12)
2a

= 0.43GeV · ∆m2
21

8.1× 10−5eV2 ·
3.3g/cm3

ρ
. (19)

If we fix the energy at this value and from the maximal condition√
2∆m2

21 sin 2θ12L/4E` = (2n + 1)π/2 (n = 0, 1, 2, · · · ) for (18), we can determine
the baseline length L` as

L` =
√

2E`(2n + 1)π
∆m2

21 sin 2θ12
= 5000km · (2n + 1) · 8.1× 10−5eV2

∆m2
21

· ρ

3.3g/cm3 . (20)

If we use the average density calculated in the PREM [7] corresponding to each
baseline, A1 becomes maximal at L` = 5000km and 10000km in the earth mantle.
We also find from (20) that Amax

1 attains to about 0.1 in the case of sin2 2θ13 = 0.15.
In fig. 2, we show the energy dependence of Aµµ and Pµµ at L = 5000km.

In the left figure, grey and black lines represent the magnitudes of Aµµ and A1
respectively. We can see that A1 takes maximal value 0.1 around E = 0.43GeV as
expected from (13). Even after averaging over the low energy region, the CP phase
effect due to the first term remains. Namely, we need not always the good energy
resolution for the measurement of the CP phase effect in this region. This means
that the CP phase effect appears in the measurement of total rates of νµ events.
In addition, good energy resolution of a detector will provide further information
from also rapidly oscillating term. In the right figure, red (grey) and blue (black)
lines correspond to the value of Pµµ in the case of δtrue = 0◦ and 180◦. We can
see that the CP phase effect changes the value largely even in survival probability.

3. Simulation of CP Sensitivity
Next, let us describe an experimental setup in order to see the CP phase effect

in νµ → νµ oscillations. We assume the JPARC beam and the water cherenkov
detector with total fiducial mass of 500kt. We consider the two patterns of the
location of the detectors. One is L = 295km (250kt) + 1000km (250kt) as the
T2KK setup and the other is L = 5000km (500kt). We assume ten years run
of only neutrinos. We calculate ∆χ2 by using only νµ → νµ oscillations because
we would like to learn the possibility for measuring the CP phase independently
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Fig. 3 ∆χ2 at 295km+1000km. The pink (thin) line represents ∆χ2 calculations including
only systematics and the blue (thick) calculations including also parameter uncertainties.
Left and right figures correspond to δtrue = 90◦ and 180◦. These figures are calculated
under the assumption of normal hierarchy.

from νµ → νe oscillations. As signal, we use CC events and QE events and as
background we consider NC events. Here, in order to avoid the double counting,
we take the normalization free for QE events. We also include systematics, signal
and background normalization and tilt. About the parameter uncertainties, we
assume 5% for three mixing angles, 1% for ∆m2

31, 4% for ∆m2
21 and 5% for ρ as

1-σ error. Later, we change the uncertainty of ∆m2
31 to 0.1%. We use the GLoBES

software for calulating the ∆χ2 [7].
Fig. 3 shows the CP sensitivity at L = 295km+1000km. In the left and right

figures, we set δtrue = 90◦ and 180◦, respectively. The horizontal line represents
the test value of δ and the vertical line represents the value of ∆χ2. In this
calculation, we assume that hierarchy is already determined as normal. Pink
(thin) lines represent ∆χ2 for including systematics only. On the other hand, blue
(thick) lines represent ∆χ2 including also the effect of parameter uncertainties. In
both cases, it is found that we cannot measure the CP phase effect well in νµ → νµ
oscillations because of the parameter uncertainties.

In fig. 4, we show ∆χ2 at the baseline length L = 5000km. Other conditions are
the same as those in fig. 3. Compared to the previous case, ∆χ2 is not affected
by the parameter uncertainties very much. In fig. 4, we can see that the allowed
range of δ at 2-σ C.L. is about 120◦. Although the precision is not so good due
to the small statistics in L = 5000km, there is a possibility for measuring the CP
phase by only νµ → νµ oscillations.

4. Correlation of CP Phase with δ(∆m2
31)

Next, we explain that the uncertainty of ∆m2
31 is related to the precise deter-

mination of δ in more detail by using the analytical expression and explore the
possibility for the improvement. For the case of O(∆′

21) ¿ 1, the probability Pµµ
is reduced to the well known expression

Pµµ ' 1− sin2 ∆′
31 −

8Jr∆21

∆̃21

sin ∆̃′
21 sin∆′

31 cos∆′
31 cos δ, (21)
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Fig. 4 ∆χ2 at L = 5000km. Conditions except for the baseline length are the same as in fig.3.

as shown in ref. [4]. If we perform the replacements ∆31 → ∆31(1+ ε) and δ → δ′,
the probability changes as

P ′µµ ' 1− sin2 ∆′
31 −

4Jr∆21

∆̃21

sin ∆̃′
21 sin 2∆′

31

(
cos δ′ +

∆31ε∆̃21L

8Jr∆21 sin ∆̃′
21

)
(22)

up to the leading order of s13 and ε. Here, we should note that the energy de-
pendence of the correction term from the uncertainty of ∆m2

31 is approximately
equal to that of cos δ′ term. Namely, we cannot distinguish two probabilities
Pµµ(∆31(1 + ε), δ′) and Pµµ(∆31, δ) when the relation

cos δ′ ' cos δ − ∆31ε∆̃21L

8Jr∆21 sin ∆̃′
21

' cos δ − ∆m2
31εaL

8Jr∆m2
21 sin aL

2

(23)

is satisfied, where we use the approximation ∆̃21 ' a. This means that the value
of the CP phase cannot be determined if ε is larger than a certain value. This is
the correlation between δ and the uncertainty of ∆m2

31 and is a serious obstacle
for measuring the CP phase in νµ → νµ oscillations. The small value of the CP
sensitivity in the baseline L = 295km+1000km is due to this correlation.

Next, let us estimate the magnitude of ε giving the small CP sensitivity. If we
substitute ρ = 3.3g/cm3, Ye = 0.494, Jr = s12c12s23c23s13c

2
13 ' 0.43, ∆m2

31 =
2.5 · 10−3eV2 and ∆m2

21 = 8.1 · 10−5eV2 into (23), we obtain

cos δ′ ' cos δ − 5 · 10−2εL

sin (2.67 · 10−4L)
. (24)

In the case of relatively short baseline, the above relation is further reduced to

cos δ′ ' cos δ − 178ε (25)
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Fig. 5 Correlation of δ with the uncertainty of ∆m2
31. In left and right figures, we take E = 10

GeV and 0.7 GeV. Regions with same color have almost the same probability given by
|P true

µµ −Pµµ| < 0.001 (0.00005) in the left (right) figure. Different colors correspond to the
different baseline lengths.

and does not depend on the baseline length. Let us illustrate the meaning of this
relation in fig. 5.

In fig. 5, regions with same color have almost the same probability as that for
δtrue = 90◦. More concretely, the region with |Pµµ − P true

µµ | ≤ 0.001 (0.00005)
is plotted in the left (right) figure. The horizontal axis and vertical axis are
taken as cos δ′ and ∆m2

31 (ε) respectively. Left and right figures represent the
case for E = 10GeV and 0.7GeV. Red (light grey), blue (dark grey) and black
colors correspond to the cases for L = 295km, 1000km and 5000km. It is obvious
that the value of δ can be determined by measuring the probabilities for two
different energies for the case of L = 5000km from fig. 5, because a superposition
of the black curves for the two different energies (left and right figures) would
lead to a clear intersection point representing the allowed region. In contrary, we
cannot determine the value of δ for a relatively short baseline like L = 295km and
1000km even if the probabilities are measured for two different energies, because
of an almost identical overlap of regions with the same color for the two different
energies (left and right figures). The overlapping is over the whole range of angles
0◦ ≤ δ ≤ 360◦. We can determine the slope of these two regions as about −0.006,
which is almost equal to the coefficient of ε, namely −1/178 in (25). From this
observation, we conclude that the uncertainty of ∆m2

31 of more than 0.6% prevents
us from determining δ from νµ → νµ oscillations only in relatively short baselines.
Or in other words, for the case of short baseline length the determination of the
CP phase δ will become possible, if the uncertainty can be decreased below 0.6%,
as demonstrated in the following section.

5. Possibility for the Test of Unitarity in T2KK
The uncertainty of ∆m2

31 can be reduced up to 1% at the T2K experiment and
the NOνA experiment [8, 10, 11]. However, it is required that the uncertainty has
to be reduced one more order of magnitude in order to receive the sensitivity for
the CP phase as discussed in the previous section. Here, we simply assume that
this is realized before the T2KK experiment starts. In ref. [4], we have discussed
the possibility for diminishing the uncertainty of ∆m2

31 and furthermore measuring
the CP phase in νµ → νµ oscillations by using the result of the T2KK experiment
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Fig. 6 ∆χ2 at L = 295km+1000km with 0.1% uncertainty of ∆m2
31. Conditions except for

the uncertainty of ∆m2
31 are the same as in fig.3.

Fig. 7 δ(∆m2
31) dependence of CP sensitivity at L = 295km+1000km. In left and right figures,

we take δtrue = 90◦ and 180◦. Three lines show 1,2 and 3-σ C.L. lines respectively. We fix
the 1-3 mixing as sin2 2θ13 = 0.15.

only.
In fig. 6, we show the CP sensitivity at L = 295km+1000km as in fig. 3 but

with 0.1% error of ∆m2
31. We found that the allowed range becomes about 160◦

(140◦) at 2-σ when δtrue = 90◦ (180◦). So, we can measure the CP phase even at
these baselines by using only νµ → νµ oscillations.

In fig. 7, we show how the CP sensitivity changes according to the uncertainty of
∆m2

31, where we fix θ13 as sin2 2θ13 = 0.15. As a result, we obtain the information
of the CP phase from νµ → νµ oscillations when the uncertainty of ∆m2

31 is below
0.6% as expected from the consideration in the previous section.

Finally, we show the θ13 dependence of CP sensitivity in fig. 8. We fix the
uncertainty of ∆m2

31 as 0.1%. As we expected from the analytical expression of
Aµµ, which is proportional to s13, the sensitivity for δ becomes worse gradually
according to the decrease of θ13. As a result, we obtain the information of the CP
phase in the case of sin2 2θ13 > 0.03 at the 1-σ level.
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Fig. 8 θ13 dependence of CP sensitivity at L = 295km+1000km. We fix the uncertainty of
∆m2

31 as 0.1. Other conditions are the same as in fig.7.

6. Summary
In summary, we have explored a new possibility for measuring the CP phase

by only νµ → νµ oscillations independently of νµ → νe oscillations in the case
that sin2 2θ13 is larger than 0.03 and has been determined in the next generation
reactor experiments. If we can measure the CP phase in two different channels
independently and there is a difference for these values, this would be considered
as the sign of new physics. Below, the results are listed.

• At first, we have investigated the energy and the baseline where the cos δ
term included in Pµµ becomes large by using both numerical and analytical
methods. As the result, we found from (19) and (20) that the coefficient Aµµ
has its largest value around E = 0.43GeV and L = 5000 and 10000km in the
earth mantle. The difference of the probabilities attains the maximal value
about 0.2 due to the CP phase effect even after averaging over the energy.

• Next, we have considered the same beam and the detector as in the T2HK
experiment but the baseline (fiducial mass) L = 295km (250kt)+1000km
(250kt) and L = 5000km (500kt) and have calculated the CP sensitivity by
using χ2 method. As the result, the allowed range becomes 120◦ (120◦) at
2-σ in L = 5000km when δtrue = 90◦ (180◦). On the other hand, we have
almost no sensitivity for the CP phase in the case of L = 295km+1000km
because of the parameter uncertainties.

• We have shown that the precise measurement of ∆m2
31 is particularly impor-

tant in determining the value of δ. If the uncertainty of ∆m2
31 will be less

than 0.6%, a certain sensitivity for δ will be obtained even in the relatively
short baseline like L ≤ 1000km.

• We have explored the possibility for measuring the CP phase in the T2KK
setup assuming the uncertainty of ∆m2

31 as 0.1%. As the result, the allowed
range is improved up to about 160◦ (140◦) at 2-σ when δtrue = 90◦ (180◦).

In future, the mixing angles and the mass squared differences are precisely mea-
sured in various kinds of experiments. If θ13 is found in the next generation reactor
experiments in addition to this improvement, it will be very important to consider
the strategy for exploring the new physics. As one of the strategies, the possibility
for measuring the CP phase in νµ → νµ oscillation is interesting.
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