RENO Reactor Neutrino Experiment

RENO & RENO-50

RENO = Reactor Experiment for Neutrino Oscillation

(On behalf of RENO Collaboration)

K.K. Joo Chonnam National University March 15, 2013

2013 ICRR Neutrino Workshop @ Kashiwa campus

Past Efforts for Finding θ_{13}

Chooz (2003) & Palo Verde (2000): No signal

sin²(2θ₁₃) < 0.12 at 90% C.L.

■ T2K : 2.5 σ excess (2011)

 $0.03 < \sin^2(2\theta_{13}) < 0.28$ at 90% C.L. for N.H.

 $0.04 < \sin^2(2\theta_{13}) < 0.34$ at 90% C.L. for I.H.

• MINOS : 1.7 σ excess (2011)

 $0 < \sin^2(2\theta_{13}) < 0.12$ at 90% C.L. for N.H.

 $0.04 < \sin^2(2\theta_{13}) < 0.19$ at 90% C.L. for I.H.

Double Chooz : 1.7 σ measurement (2011)

 $sin^{2}(2\theta_{13}) = 0.086 \pm 0.041(stat.) \pm 0.030(syst.)$

Daya Bay (03. 08. 2012)
 5.2 σ observation
 sin²(2θ₁₃) = 0.092 ±
 0.016(stat.)±0.005(syst.)

RENO Result

Last result on PRL: Ahn et al (RENO collab.), PRL 108, 191802 (2012)

 $\sin^2 2\theta_{13} = 0.113 \pm 0.013(stat.) \pm 0.019(syst.)$

For the New result

Statistics:

-- about twice more data

Systematics:

- -- Improved background estimation/reduction (Li/He background, fast N, flasher removal)
- -- Improved energy scale calibration

Outline

RENO

- Introduction
- Experimental setup & detector
- Data-taking & data set
- Improvements in data analysis
- Results
- Summary

RENO-50

- Introduction
- Physics with RENO-50
- Summary

Neutrino Mixing Parameters

In 1962 Z. Maki, M. Nakagawa, and S. Sakata considered neutrino <u>flavor</u> oscillations: neutrinos of different flavors can be transformed to each other

Matrix Components: 3 Angles $(\theta_{12}; \theta_{13}; \theta_{23})$ 1 CP phase (δ) 2 Mass differences

$$\begin{pmatrix} \mathbf{v}_{e} \\ \mathbf{v}_{\mu} \\ \mathbf{v}_{\tau} \end{pmatrix} = \begin{pmatrix} \mathbf{U}_{e1} & \mathbf{U}_{e2} & \mathbf{U}_{e3} \\ \mathbf{U}_{\mu 1} & \mathbf{U}_{\mu 2} & \mathbf{U}_{\mu 3} \\ \mathbf{U}_{\tau 1} & \mathbf{U}_{\tau 2} & \mathbf{U}_{\tau 3} \end{pmatrix} \begin{pmatrix} \mathbf{v}_{1} \\ \mathbf{v}_{2} \\ \mathbf{v}_{3} \end{pmatrix}$$

[∨]12 ^{~∨}sol

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{-i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

atmospheric SK, K2K
for $\Re 0 = 23^{\circ}$
The Next Big Thing?
SNO, solar SK, KamLANE

Large and maximal mixing!

∼atm

23

Neutrino Oscillation

Reduction of reactor neutrinos due to oscillations

□ $\sin^2 2\theta_{13} > 0.01$ with 10 t •14GW •3yr ~ 400 t•GW•yr (400 t•GW•yr: a 10(40) ton far detector and a 14(3.5) GW reactor in 3 years)

RENO Expected Sensivity

RENO Collaboration

(12 institutions and 40 physicists)

- Chonbuk National University
- Chonnam National University
- Chung-Ang University
- Dongshin University
- Gyeongsang National University
- Kyungpook National University
- Pusan National University
- Sejong University
- Seokyeong University
- Seoul National University
- Seoyeong University
- Sungkyunkwan University

+++ http://reno01.snu.ac.kr/RENO

- Total cost : \$10M
- Start of project : 2006
- The first experiment running with both near & far detectors from Aug. 2011

YongGwang Nuclear Power Plant

- Located in the west coast of southern part of Korea
- □ ~400 km from Seoul
- 6 reactors are lined up in roughly equal distances and span ~1.3 km
- Total average thermal output ~16.4GW_{th} (2nd largest in the world)

YongGwang(靈光): = glorious[splendid] light (~spirited)

RENO Detector

Inner PMTs: 342 10" PMTs solid angle coverage = 12.6% Outer PMTs: ~ 60 10" PMTs

	Thick (cm)	vessel	Material	Mass (tons)
Target	140	Acrylic (10mm)	Gd(0.1%) +LS	15.4
Gamma catcher	60	Acrylic (15mm)	LS	27.5
Buffer	70	SUS(5mm)	Mineral oil	59.2
Veto	150	Steel (15mm)	water	354.7

total ~460 tons

Summary of Detector Construction

- 2006. 03 : Start of the RENO project
- 2008. 06 ~ 2009. 03 : Civil construction including tunnel excavation
- 2008. 12 ~ 2009. 11 : Detector structure & buffer steel tanks completed
- 2010.06 : Acrylic containers installed
- 2010. 06 ~ 2010. 12 : PMT test & installation
- 2011. 01 : Detector closing/ Electronics hut & control room built
- 2011.02 : Installation of DAQ electronics and HV & cabling
- 2011. 03 ~ 06 : Dry run & DAQ debugging
- 2011. 05 ~ 07 : Liquid scintillator production & filling
- 2011.07 : Detector operation & commissioning
- 2011. 08 : Start data-taking

PMT Mounting (2010. 8~10)

PMT Mounting (2010. 8~10)

Detector Closing (2011.1)

Near : Jan. 21, 2011

Far : Jan. 24, 2011

Data Acquisition System

- 24 channel PMT input to ADC/TDC
- 0.1pC, 0.52nsec resolution
- ~2500pC/ch large dynamic range
- No dead time (w/o hardware trigger)
- Fast data transfer via Ethernet R/W

Principle of Neutrino Detection

- □ Use inverse beta decay (v_e + p→e⁺ + n) reaction process
 □ Prompt part: subsequent annihilation of the positron to two 0.511MeV γ
 □ Delayed part: neutron is captured
 - ~200µs w/o Gd
 - $\sim 30 \mu s \ {\rm W} \ {\rm Gd}$
 - Gd has largest n absorption cross section & emits high energy γ
- □ Signal from neutron capture
 - ~2.2MeV w/o Gd
 - $\sim 8 MeV w Gd$
- Measure prompt signal & delayed signal
 "Delayed coincidence" reduces backgrounds drastically

- CBX : TMHA (trimethylhexanoic acid)

Liquid Production System (2010. 11~2011. 3)

Stability of Gd Concentration

* Stable light yield : ~250 pe/MeV

* Stable Gd concentration (0.11%)

Nuclear Instruments and Methods in Physics Research A, 707, 45–53 (2013. 4. 11)

Stability of Transmittance [T]

* Shimadzu UV-1800 spectrophotometer

Data-Taking & Data Set

- Data taking began on Aug. 1, 2011 with both near and far detectors.
- Data-taking efficiency > 90%.
- Trigger rate at the threshold energy of 0.5~0.6 MeV : 80 Hz @ FD
- Data-taking period : > 510 days Aug. 11, 2011 ~ present

Data-taking efficiency

IBD Event Signature and Backgrounds

□ IBD Event Signature

$$\bar{\nu}_e + p \to e^+ + n$$

Prompt signal (e⁺) : 1 MeV 2γ's + e⁺ kinetic energy (E = 1~10 MeV)

Delayed signal (n) : 8 MeV γ's from neutron's capture by Gd

Backgrounds

- Accidental backgrounds which mimic IBD Event
- ${}^{9}\text{Li}/{}^{8}\text{He}\ \beta$ -n followers produced by cosmic muon spallation
- Fast neutrons produced by muons, from surrounding rocks and inside detector (n scattering : prompt, n capture : delayed)

Improvements in Data Analysis

Better estimation of Li/He background :

 $2.59 \pm 0.75 / day \rightarrow 3.61 \pm 0.60 / day$ (far)

 $12.45 \pm 5.93 / day \rightarrow 13.73 \pm 2.13 / day$ (near)

(more improvement soon on the errors...)

Improved flasher removal : reduction of accidental background

Reduction of fast neutron background :

 $0.97 \pm 0.06 / day \rightarrow 0.68 \pm 0.04 / day$ (far)

 $5.00 \pm 0.13 / day \rightarrow 3.14 \pm 0.09 / day$ (near)

- Major efforts on energy calibration : accurate energy scale
- Selection of clean data sample

⁹Li/⁸He β-n Backgrounds

⁹Li/⁸He are unstable isotopes emitting (β ,n) followers and produced when muon interact with carbon in the LS.

Normal event

Flasher Characteristics

Anti-isolation variable R

$$R_n = \frac{\overline{n}_n}{n_{\max}}$$

 $\overline{n}_{n} \equiv \frac{\sum_{n}}{N_{nb}} \stackrel{\text{Sum of NPEs in the neighbouring PMTs}}{N_{nb}}$

\rightarrow Smaller R value for flasher events.

Effectively we can remove sparking backgrounds

Cf Contamination

- Tiny fraction of Cf calibration source dissolved into Gd-LS after Oct. 13, 2012 :
 - Loose O-ring in the source container \rightarrow LS into the container \rightarrow Cf contamination on gloves and the container surface \rightarrow dissolved into LS
 - Cf at the bottom of target (confirmed by event vertex)

Cf Contamination

Most of Cf events were removed by a multiplicity cut and

remained Cf events in IBD events were estimated by its energy shape.

Observed Daily IBD Rate

- Solid line is predicted rate from the neutrino flux calculation.
- Observed points have very good agreement with prediction.
- It's the accurate flux measurement.

1D/3D Calibration System (2010. 8 ~ 2011. 7)

Two identical source driving systems at the center of TARGET and one side of GAMMA CATCHER

Energy Scale Calibration

Energy Scale Calibration

IBD Event Selection

- \Box Reject flashers and external gamma rays : $Q_{max}/Q_{tot} < 0.03$
- Muon veto cuts : reject events after the following muons
 - (1) 1 ms after an ID muon with E > 70 MeV, or with 20 < E < 70 MeV and OD NHIT > 50
 - (2) 10 ms after an ID muon with E > 1.5 GeV
- \square Coincidence between prompt and delayed signals in 100 μs
 - E_{prompt} : 0.7 ~ 12.0 MeV, E_{delayed} : 6.0 ~ 12.0 MeV
 - coincidence : 2 μ s < Δ t_{e+n} < 100 μ s

Multiplicity cut : reject pairs if there is a trigger in the preceding 100 ms window

Background Events

Detector Stability of Energy Scale

IBD candidate's delayed signals (capture on Gd)

Measured Spectra of IBD Prompt Signal

Backgrounds

- Backgrounds shape & rates are well understood
- Total 6.5% background at Far & 2.7% background at Near

Spectra & Capture Time of Delayed Signals

New Results

preliminary

	Near (PRL)	Near (New)	Far (PRL)	Far (New)
# of IBD events	153,807	279,787	17,062	30,211
Total Background rate (/day)	21.73 +- <mark>5.93</mark>	20.48 +- 2.13	4.3 +- 0.75	4.89 +- 0.60
Accidental backgr ound (/day)	4.30 +- 0.06	3.61 +- 0.05	0.68 +- 0.03	0.60 +- 0.03
Fast neutron backg round (/day)	4.98 +- 0.16	3.14 +- 0.09	1.03 +- 0.07	0.68 +- 0.04
Li/He background (/day)	12.45 +- 5.93	13.73 +- 2.13	2.59 +- 0.75	3.61+- 0.60
DAQ Live-time (days)	192.42	369.034	222.06	402.693
Detector efficiency (%)	64.7 +- 0.14	61.99 %	74.5 +- 0.14	71.37 %

Observed Spectra for Prompt Signal (e⁺)

Data & MC match very well !

Comparison of Observed Spectra

Finally, we can compare the number of reactor anti-neutrino events observed in our detector with the expectation from the reactor.

Expected Reactor Antineutrino Fluxes

Reactor neutrino flux

$$\Phi(E_{v}) = \frac{P_{th}}{\sum_{i \text{ sotopes}} f_{i} \cdot E_{i}} \sum_{i}^{i \text{ sotopes}} f_{i} \cdot \phi_{i}(E_{v})$$

- P_{th} : Reactor thermal power provided by the YG nuclear power plant
- f_i: Fission fraction of each isotope determined by reactor core simulation of Westinghouse ANC
- $\phi_i(E_v)$: Neutrino spectrum of each fission isotope
 - [* P. Huber, Phys. Rev. C84, 024617 (2011)
 - T. Mueller et al., Phys. Rev. C83, 054615 (2011)]
- E_i : Energy released per fission
 - [* V. Kopeikin et al., Phys. Atom. Nucl. 67, 1982 (2004)]

Isotopes	James	Kopeikin	
²³⁵ U	201.7±0.6	201.92 ± 0.46	
²³⁸ U	205.0 ± 0.9	205.52 ± 0.96	
²³⁹ Pu	210.0 ± 0.9	209.99 ± 0.60	
²⁴¹ Pu	212.4±1.0	213.60 ± 0.65	

Detection Efficiency & Systematic Uncertainties

Criteria		Detection efficiency	(%)
The fraction of neutron captures on Gd		86.52 ± 0.7	
Flasher cut	& Prompt energy cut	96.19 ± 0.11	
The 6.0Me ^{1/ threshold out for delayed signal}			
Time coin		Reactor	
The spill-ir		Uncorrelated(%)	Correlated(%)
Common	Thermal power	0.5	-
common	Fission fraction	0.7	-
	Fission reaction cross section	-	1.9
Muon veto	Reference energy spectra	-	0.5
Multiplicity	Energy per fission	-	0.2
The total e	Combined	0.9	2.0

Detection				
	Uncorrelated(%)	Correlated(%)		
IBD cross section	-	0.2		
Target protons	0.10	0.5		
Prompt energy cut	0.01	0.1		
Flasher cut	0.01	0.11		
Gd capture ratio	0.10	0.7		
Delayed energy cut	0.10	0.46		
Time coincidence cut	0.01	0.44		
Spill-in	0.08	0.71		
Muon veto cut	0.02	0.02		
Multiplicity cut	0.04	0.06		
Combined	0.20	1.31		

Reactor Antineutrino Disappearance

Definitive Measurement of θ_{13}

Summary

- RENO was the first experiment to take data with both near and far detectors, from August 1, 2011.
- RENO has collected about 502 live days of neutrino data so far & improved systematic uncertainties and energy calibration
- RENO observed a clear disappearance of reactor antineutrinos. $R = 0.929 \pm 0.006(stat.) \pm 0.009(syst.)$
- RENO measured the last, smallest mixing angle θ_{13} sinf $2\theta_{13} = 0.100 \pm 0.010$ (*stat.*) ± 0.015 (*syst.*)
- There is a room to improve sys. Error (to be improved soon)

RENO-50

- Large θ_{12} neutrino oscillation effects at 50 km + 5kton liquid scintillator detector
- RENO can be used as near detectors. → Precise reactor neutrino fluxes
- Negligible contribution from other nuclear power plants.

RENO-50 vs. KamLAND

- RENO-50 is dedicated to the YG power plant. (negligible contribution from the other nuclear power plants)
- RENO can be used as near detectors.
- Precise reactor neutrino fluxes : systematic error from ~3% to ~0.1%

• KamLAND uses the entire Japanese nuclear power plants as a source.

1st Δm_{21}^2 Maximum (L~50km); precise value of θ_{12} & Δm_{21}^2 + mass hierarchy (Δm_{31}^2)

$$P_{R}(\bar{v}_{e} \to \bar{v}_{e}) = 1 - \begin{cases} \cos^{4} \theta_{13} \sin^{2} 2\theta_{12} \sin^{2} \Delta_{21} \\ +\sin^{2} 2\theta_{13} \sin^{2} \theta_{12} (\cos 2\Delta_{31} \sin^{2} \Delta_{21} - \frac{1}{2} \sin 2\Delta_{31} \sin 2\Delta_{21}) \end{cases}$$

RENO-50

5000 tons ultra-low-radioactivity Liquid Scintillation Detector RENO

Site Survey for RENO-50

MC Simulation for RENO-50

Energy Resolution

Also GloBES study is under way

MC Study of Mass Hierarchy at RENO-50

- Bin size effect of determining mass hierarchy
- At least 3% energy resolution is needed to distinguish NH and IH (@ ~5 MeV : 12 bin/MeV)

MC Study of Mass Hierarchy at RENO-50

χ² calculation test

 \square χ^2 calculation test RENO-50 expects to observe ~1500 events / year.

- Include oscillation effects and assume 70% detection efficiency.
- \square Generate for NH and calculate χ^2 based on hypotheses of NH or IH.
 - χ^2 value decreases rapidly with energy resolution.
 - 3σ determination : 60000 events (40 years) for RENO-50.

[10 years for a 20 kton detector]

Conclusion

- A large (> 20 kton) detector with 3% energy resolution is needed (25% PMT coverage) to determine neutrino mass hierarchy.
 - 10 years of data taking.
 - Modular detector components necessary because of ~25m attenuation length.
- □ RENO-50 needs an alternative solution for the mass hierarchy.
- □ The solution will be reported soon....

RENO-50 vs. KamLAND

	Oscillation Reduction	Reactor Neutrino Flux	Detector Size	Syst. Error on v Flux	Error on sin²θ ₁₂
RENO-50 (50 km)	80%	$\frac{13 \times 6 \times \phi_0}{[6 \text{ reactors}]}$	5 kton	~ 0.3%	~1%
KamLAND (180 km)	40%	$53 \times \phi_0$ [53 reactors]	1 kton	3%	5.4%
Figure of Merit	×2	×1.5	×5	×10	
$(50 \text{ km} / 180 \text{ km})^2 \approx 13$					

J-PARC neutrino beam

Physics with RENO-50 (1)

- Precise measurement of θ_{12} and Δm_{21}^2 $\frac{\delta \sin^2 \theta_{12}}{\sin^2 \theta_{12}} \sim 1.0\% (1\sigma) \text{ in a year} \qquad \frac{\delta \Delta m_{21}^2}{\Delta m_{21}^2} \sim 1.0\% (1\sigma) \text{ in } 2~3 \text{ years} \qquad (\leftarrow 5.4\%)$
- Determination of mass hierarchy (sign of Δm_{31}^2 or Δm_{32}^2)
 - Quite challenging : requires extremely good energy resolution
 - Plan B : an additional 1000 ton detector at ~10 km

(L: 300 m + 1.4 km + 10 km + 50 km)

- Neutrino burst from a Supernova in our Galaxy
 - ~1500 events (@8 kpc)
 - A long-term neutrino telescope

Physics with RENO-50 (2)

- Geo-neutrinos : ~ 300 geo-neutrinos for 5 years
 - Study the heat generation mechanism inside the Earth
- Solar neutrinos : with ultra low radioacitivity
 - Matter effects on neutrino oscillation
 - Probe the center of the Sun and test the solar models
- Reactor physics : non-proliferation
- Detection of J-PARC beam : ~120 events/year
- Test of non-standard physics : sterile/mass varying neutrinos

Physics with RENO-50 (3)

Search for neutrinoless double beta decay

KamLAND-Zen

RENO-50

Closing Remarks

- RENO, the first Korean neutrino detector, observed a clear disappearance of reactor antineutrinos, and performed a definitive measurement of θ₁₃ with both near and far detectors in operation.
- A surprisingly large value of θ₁₃ will strongly promote the next round of neutrino experiments to find the CP phase and determine the mass hierarchy.
- RENO will continue data-taking for next 3~4 more years, reaching its sensitivity limit, in order to obtain a precise measurement of θ_{13} .
- Korean reactors can be used as an intense neutrino source to study the neutrino properties. RENO-50, a multi-purpose neutrino detector, is pursued to perform high-precision measurements of θ₁₂ and Δm²₂₁, determine the mass hierarchy, and detect neutrinos from the astrophysical sources.

RENO-50 Workshop @Seoul

KNRC International Workshop on "RENO-50" toward Neutrino Mass Hierarchy

13-14 June 2013, Seoule National University, Korea

Overview

Home > Overview

Dear colleagues,

We would like to call your attention to an international workshop on RENO-50 that will be held at Seoul National University, Seoul in Korea on June 13-14, 2013.

The recent measurement of a rather large neutrino mixing angle theta_13 has promoted the opportunities to determine the neutrino mass hierarchy and the leptonic CP phase. Reactor neutrinos have been demonstrated to be a valuable source to measure neutrino mixing angles, and possibly to determine the mass hierarchy.

After the successful RENO experiment, we plan to build a next large liquid scintillator detector to determine the neutrino mass hierarchy and make an unprecedentedly accurate measurement of the mixing angle

http://home.kias.re.kr/MKG/h/reno50/

■ When: June 13 – 14, 2013

Overview

Scientific Programme

Registration Registration Form

Venue

Bulletin

Accomodation

Photo

Local Organizing Committee

List of registration

Where: Seoul National University, Seoul, Korea

Please register & join!