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* |s neutrino interference (diffraction) observable?
Neutrino is a quantum mechanical wave and interacts
with matter extremely weakly.

Neutrino should show a phenomenon of interference or diffraction, in a
double slit-like experiment.

However, it is very hard to control the neutrino ,since it interacts with any
material so weakly.

Hence a new method must be considered.
Our answer and proposal ” Neutrino diffraction is observable . Use a pion
(and other particle) decay process !”



Electron interference (bi-blism;Tonomura)
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Unknown facts on neutrinos

Absolute neutrino mass
Tritium decay electron spectrum
¥nu-less double Beta decay
Cosmology gives bound.

Unclear now !

How many ? 37
Mixing matrix



Scattering ,interference, and diffraction of

neutrino ( our works)
1. Neutrino is a wave, so it varies in space and time,
and follows “Superposition principle”

2. Neutrino is identified from physical reactions that
are caused by the neutrino.

3. 1 and 2 are combined. This method is different
from an ordinary oscillation analysis and supply a
new physical quantity.

4. Diffraction was found theoretically and is observed
easily with a large number of events.



An example of a wave phenomenon

On mass shell neutrino is in the intermediate state.
External particles are plain waves.
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Real pion decays
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Transition in a finite time-interval
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What is the finite-size effect 7

1. Quantum mechanical transition in a finite time
interval T.

P+ w— (1)
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2. Violates the energy conservation

3. States at ultra-violet energy region, J , gives a
universal correction.

4. Relativistic invariance >> large momentum
states

Pij = [Ty



Neutrino diffraction(ishikawa and tobita)
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1.Correlation function has a light-cone singularity which is generated by a superposition of
relativistic waves.
2.The energy non-conserving term gives the finite-size correction, which does not suppress
the electron mode.
3 Asymptotic boundary conditions are satisfied with a wave packet (LSZ).



Correlation function

* Integration variable is changeto ¢ = p; — px
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Extract the light-cone singularity
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Integration in space-time coordinates
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L = cT is length of decay volume



Three flavor neutrino

P = P(O)(long) + Puif fraction(short), mz > dm?

PO (long) = flavour oscillation, Pit traction(short) = neutrino di f fraction



Diffraction effect (muon ¥nu)

P = Pnormal + Pdiff’raction
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¥nu-nucleon total cross section
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Helicity suppression

The finite-size correction comes from the energy
non-conserving term.

The pi > e+neutrino_e mode is suppressed by the
angular momentum conservation and the energy-
momentum conservation.

Since the finite-size correction does not conserve
the energy, it violates the helicity suppression.

When the neutrino is detected, the electron
mode is enhanced.



Diffraction Events(enhances electron neutrino)
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Diffraction prediction of the electron neutrino diffraction(T2K. on axis)
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Vv, appearance at near detector
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Comparisons with previous experiments

* Diffraction effect has been observed but that has not
been recognized. So, unusual events have been regarded
as anomalous events . They are explained with the
neutrino diffraction.

* High energy neutrino nucleon scattering cross section
decreases with the energy slowly. This is understood by
the diffraction effect of the neutrino process.

* High precision experiment may provide the neutrino
absolute mass.



Anomalous properties of the diffraction

1 neutrino diffraction is easily observed once the
statistics becomes large. quantum interference

2 energy conservation is violated : finite-size effect
3 lepton number appears to be non-conserved.

P(L) decreases with L, so unitarity appears to be
violated. But they are not.: finite-size effect and
retarded effect.

4 pion life time varies due to the measurement,
quantum Zeno effect . However the majority of the
pion are unchanged because the neutrino
interacts with matter so weakly.
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The neutrino diffraction is a finite-size
correction

* Why does the neutrino diffraction emerge?

1.Transition in a finite time interval T,
i tw— ) (1)
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, violates the energy conservation .
2.States at ultra-violet energy region
Ey)— oo
give a universal correction.

3. Relativistic invariance >> large momentum
states

Pij = [Ty




Other channels

* 1. muon decay

e 2. neutron decay

* 3.nucleus decays

* 4.neutrino scattering

(In progress)
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New phenomena caused by finite-size
effects

1. Emission of light particles .

Energy non-conserving transition lead background
noises that has universal properties.

“theory of universal noises “
2. Interference and diffraction.

interference of a new scale that is very different
from wave length  “physics of a new scale ”

3. Absorption :
“Coherent absorption phenomena”
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conclusion

* With enough number of neutrino events,
the neutrino diffraction is easy to observe and

may provide the absolute neutrino mass.



