What is the impact of the observation of θ_{13} on neutrino flavor structure ?

第25回宇宙ニュートリノ研究会 宇宙線研究所 March 29, 2012, Kashiwa

Morimitsu Tanimoto (Niigata University)

Plan of my talk

- **1** Introduction
 - Toward observation for θ_{13}
- 2 Tri-bimaximal mixing Paradigm and Discrete Flavor Symmetry
- **3** Breaking with Tri-bimaximal mixing
- **4** Large θ_{13} and the neutrino masses
- **5** Summary

1 Introduction

Discovery of the Lepton Mixing Angles

Solar Neutrinos θ_{12}

SuperK I

combined

Kamaland 2003 θ_{12}

Evidence for Reactor anti-neutrino disappearence

There are three mixing angles for leptons. Two large mixing angles $\theta_{23}, \quad \theta_{12}$ How large is the last mixing angle ? θ_{13} Lepton Mixing Pattern **Bi-maximal mixing** $\theta_{13} = 0$ **Tri-bi maximal mixing** However, there is no reason why $\theta_{13}=0$ exactly. **Mission**: Observe θ_{13} ! Predict θ_{13} !

Toward observation for θ₁₃ Neutrino Mixing Matrix (MNS Matrix)

$$U = \begin{bmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{bmatrix} \begin{bmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{-i\delta} & 0 & c_{13} \end{bmatrix} \begin{bmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
$$c_{ij} \equiv \cos\theta_{ij}, s_{ij} \equiv \sin\theta_{ij}$$

Including Majorana Phases

$$U = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\alpha_1} & 0 \\ 0 & 0 & e^{i\alpha_2} \end{pmatrix}$$

T2K (Tokai-to-Kamioka) experiment

T2K Main Goals:

★ Discovery of $v_{\mu} \rightarrow v_{e}$ oscillation (v_{e} appearance)

\star Precision measurement of v_{μ} disappearance

Global Fit of Neutrino Parameters (including T2K, MINOS before Daya Bay)

parameter	best fit $\pm 1\sigma$	2σ	3σ
$\Delta m_{21}^2 [10^{-5} \mathrm{eV}^2]$	$7.59^{+0.20}_{-0.18}$	7.24 - 7.99	7.09 - 8.19
$\Delta m_{31}^2 [10^{-3} \mathrm{eV}^2]$	$2.50^{+0.09}_{-0.16} \\ -(2.40^{+0.08}_{-0.09})$	2.25 - 2.68 -(2.23 - 2.58)	2.14 - 2.76 -(2.13 - 2.67)
$\sin^2 \theta_{12}$	$0.312\substack{+0.017\\-0.015}$	0.28 - 0.35	0.27 – 0.36
$\sin^2 \theta_{23}$	$\begin{array}{c} 0.52\substack{+0.06\\-0.07}\\ 0.52\pm0.06\end{array}$	$0.41 – 0.61 \\ 0.42 – 0.61$	0.39 – 0.64
$\sin^2 \theta_{13}$	$0.013^{+0.007}_{-0.005}$ $0.016^{+0.008}_{-0.008}$	0.004 - 0.028 0.005 - 0.031	0.001 - 0.035 0.001 - 0.039
	$(0.61^{\pm 0.006})$	Daya	Bay 0.012-0.038
δ	$(-0.01_{-0.65}) \pi$ $(-0.41_{-0.70}^{+0.65}) \pi$	$0-2\pi$	$0-2\pi$

Upper (Lower) : Normal (Inverted) Mass Hierarchy Schwetz, Tortola, Valle, New J, Phys. 13: 109401, 2011

2 Tri-bimaximal mixing Paradigm and Discrete Flavor Symmetry (Before T2K, DChooz and Daya Bay)

Neutrino Data suggested Tri-bimaximal Mixing of Neutrinos

 $\sin^2 \theta_{12} = 0.312_{-0.015}^{+0.017} , \quad \sin^2 \theta_{23} = 0.52_{-0.07}^{+0.06}$

$$\sin^2 \theta_{12} = 1/3$$
, $\sin^2 \theta_{23} = 1/2$, $\sin^2 \theta_{13} = 0$,

$$U_{\rm tri-bimaximal} = \begin{pmatrix} \sqrt{2/3} & \sqrt{1/3} & 0\\ -\sqrt{1/6} & \sqrt{1/3} & -\sqrt{1/2}\\ -\sqrt{1/6} & \sqrt{1/3} & \sqrt{1/2} \end{pmatrix}$$

Harrison, Perkins, Scott (2002)

Consider the structure of Neutrino Mass Matrix, which gives Tri-bi maximal mixing

$$M_{\nu}^{\exp} \simeq V_{\text{tri-bi}}^{*} \begin{pmatrix} m_{1} & & \\ & m_{2} & \\ & & m_{3} \end{pmatrix} V_{\text{tri-bi}}^{\dagger}$$
$$= \underbrace{\frac{m_{1} + m_{3}}{2} \begin{pmatrix} 1 & & \\ & & 1 \end{pmatrix}}_{2} + \frac{m_{2} - m_{1}}{3} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}}_{1} + \frac{m_{1} - m_{3}}{2} \begin{pmatrix} 1 & & 1 \\ & & 1 \end{pmatrix}}$$

integer (inter-family related) matrix elements
 ↔ non-abelian discrete flavor sym

Mixing angles are independent of mass eigenvalues

For example, consider A_{4} group Four irreducible representations in A_4 symmetry 1 1' 1" 3 Consider A₄ triplet, 3 (l_e , l_μ , l_τ)_L Tensor Product of **3** (a_1, a_2, a_3) and **3** (b_1, b_2, b_3) $\mathbf{3} \times \mathbf{3} \Rightarrow \mathbf{1} = a_1 * b_1 + a_2 * b_3 + a_3 * b_2$

$$l l h h / \Lambda \quad (3 \times 3 \times 1 \times 1) \quad gives$$
$$(le le + l_{\mu}l_{\tau} + l_{\mu}l_{\tau}) \ v^2 / \Lambda$$

 $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$

A₄ symmetric

$$M_{\nu}^{\exp} = \frac{m_1 + m_3}{2} \begin{pmatrix} 1 & & \\ & 1 & \\ & & 1 \end{pmatrix} + \frac{m_2 - m_1}{3} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} + \frac{m_1 - m_3}{2} \begin{pmatrix} 1 & & \\ & 1 & \\ & 1 \end{pmatrix}$$

The third matrix is A₄ symmetric !

The first and second matrices are well known to be of S₃ symmetric.

In order to get the first and second matrix in A₄ model, non-trivial flavons are required.

Typical Non-Abelian Discrete Groups

S₃ S₄ A₄ T' D₄ Δ(27) Δ(54) O O

Singlet11'1''....O: includes both 2 and 3Doublet2....2 familiesTriplets3....3 families

Remark: S_3 and A_4 are sub-groups of S_4 .

H. Ishimori, T. Kobayashi, H. Ohki, Y. Shimizu, H. Okada, M. Tanimoto, Prog. Theor. Phys. Suppl. 183 (2010) 1-163. [arXiv:1003.3552 [hep-th]].

Text book to be published at Springer for Physicist (2012)

高次元をオービフォールド化したとき離散対称性が現れる。 (A. Adulpravitchai, A. Blum, M. Lindner, JHEP 0907: 053, 2009)

オービフォルド	格子の成す角	フレーバー対称性
${f S}^1/{f Z}_2$		S_2
$\mathbf{T}^2/\mathbf{Z}_2$	60°	S_4
		A ₄ (proper Lorenz tr.)
	90°	D_4
	上記以外	$Z_2 \times Z_2$

Stringy origin of non-Abelian discrete flavor symmetries T. Kobayashi, H. Niles, F. PloegerS, S. Raby, M. Ratz, hep-ph/0611020

Non-Abelian Discrete Flavor Symmetries from Magnetized/Intersecting Brane Models H. Abe, K-S. Choi, T. Kobayashi, H. Ohki, 0904.2631

Remark:

 Tri-bimaximal Mixing
 realized in

$$M_{\text{TBM}} = \frac{m_1 + m_3}{2} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} + \frac{m_2 - m_1}{3} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} + \frac{m_1 - m_3}{2} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

Additional Matrices break Tri-bimaximal mixing

$$\begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \quad \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
$$\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} - \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} - \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

which could appear in A_4 , S_4 , $\Delta(27)$ flavor symmetries.

Famous Model of Tri-bimaximal Mixing A₄ Symmetry **Tetrahedral Symmetry** 1 1' 1" 3 Four irreducible representations in A₄ symmetry E. Ma and G. Rajasekaran, PRD64(2001)113012 2 2 the even permutation of 4 objects class h χ_1 n $\chi_{1''}$ χ_3 $\chi_{1'}$ 3 1 1 1 C_1 1 1 120°回転 ω^2 240°回転 3 C_2 1 0 4 ω 180°回転 ω^2 C_3 3 1 0 4 ω 4 3 1 C_4 3 2 -11

At first

let us understand how to get the tri-bimaximal mixing in the example of A_4 flavor model.

G. Altarelli, F. Feruglio, Nucl. Phys. B720 (2005) 64

 $A_4 \times Z_3$ charge assignment A_4 Favor mode

	(L_e, L_μ, L_τ)	R_e^c	R^c_{μ}	R_{τ}^{c}	H _{u,d}	χ_ℓ	χ_{ν}	χ
A ₄	3	1	1'	1″	1	3	3	1
Z_3	ω	ω^2	ω^2	ω^2	1	1	ω	ω

 $\omega^3 = 1$

 $\chi_{\ell}, \chi_{\nu}, \chi$ are new scalars of gauge singlets.

 $\begin{array}{ccc} A_4 \text{ invariant superpotential can be written by:} \\ \text{for charged leptons} & 1' \times 1'' & \rightarrow 1 \end{array}$

$$W_{L} = \frac{y_{e}}{\Lambda} (L_{e}\chi_{\ell_{1}} + L_{\mu}\chi_{\ell_{3}} + L_{\tau}\chi_{\ell_{2}})R_{e}H_{d} \qquad 3_{L} \times 3_{flavon} \rightarrow 1$$

+ $\frac{y_{\mu}}{\Lambda} (L_{e}\chi_{\ell_{2}} + L_{\mu}\chi_{\ell_{1}} + L_{\tau}\chi_{\ell_{3}})R_{\mu}H_{d} \qquad 3_{L} \times 3_{flavon} \rightarrow 1$ "
+ $\frac{y_{\tau}}{\Lambda} (L_{e}\chi_{\ell_{3}} + L_{\mu}\chi_{\ell_{2}} + L_{\tau}\chi_{\ell_{1}})R_{\tau}H_{d} + h.c., \ 3_{L} \times 3_{flavon} \rightarrow 1$ "

for neutrinos

$$\begin{split} W_{\nu} &= \frac{y_1}{\Lambda^2} (L_e L_e + L_\mu L_\tau + L_\tau L_\mu) H_u H_u \chi \quad \mathbf{3_L} \times \mathbf{3_L} \times \mathbf{1_{flavon}} \to \mathbf{1} \\ &+ \frac{y_2}{3\Lambda^2} [(2L_e L_e - L_\mu L_\tau - L_\tau L_\mu) \chi_{\nu_1} \\ &+ (-L_e L_\tau + 2L_\mu L_\mu - L_\tau L_e) \chi_{\nu_2} \quad \mathbf{3_L} \times \mathbf{3_L} \times \mathbf{3_{flavon}} \to \mathbf{1} \\ &+ (-L_e L_\mu - L_\mu L_e + 2L_\tau L_\tau) \chi_{\nu_3}] H_u H_u + h.c., \end{split}$$

$$\mathbf{3} \times \mathbf{3} \Rightarrow \mathbf{1} = a_1 * b_1 + a_2 * b_3 + a_3 * b_2$$

After $A_4 \times Z_3$ symmetry is spontaneously broken by VEVs of χ_ℓ , χ_ν , and χ , mass matrices are obtained as

$$M_{I} = \frac{V_{d}}{\Lambda} \begin{pmatrix} y_{e} \langle \chi_{\ell_{1}} \rangle & y_{e} \langle \chi_{\ell_{3}} \rangle & y_{e} \langle \chi_{\ell_{2}} \rangle \\ y_{\mu} \langle \chi_{\ell_{2}} \rangle & y_{\mu} \langle \chi_{\ell_{1}} \rangle & y_{\mu} \langle \chi_{\ell_{3}} \rangle \\ y_{\tau} \langle \chi_{\ell_{3}} \rangle & y_{\tau} \langle \chi_{\ell_{2}} \rangle & y_{\tau} \langle \chi_{\ell_{1}} \rangle \end{pmatrix}$$

$$M_{\nu} = \frac{v_{u}^{2}}{3\Lambda} \begin{pmatrix} 3y_{1} \langle \chi \rangle + 2y_{2} \langle \chi_{\nu_{1}} \rangle & -y_{2} \langle \chi_{\nu_{3}} \rangle & -y_{2} \langle \chi_{\nu_{2}} \rangle \\ -y_{2} \langle \chi_{\nu_{3}} \rangle & 2y_{2} \langle \chi_{\nu_{2}} \rangle & 3y_{1} \langle \chi \rangle - y_{2} \langle \chi_{\nu_{1}} \rangle \\ -y_{2} \langle \chi_{\nu_{2}} \rangle & 3y_{1} \langle \chi \rangle - y_{2} \langle \chi_{\nu_{1}} \rangle & 2y_{2} \langle \chi_{\nu_{3}} \rangle \end{pmatrix}$$

where $v_d = \langle H_d \rangle$, $v_u = \langle H_u \rangle$.

The mass matrices do not yet predict tri-bimaximal mixing ! Can one get Desired Vacuum in Spontaneous Symmetry Breaking ? We need Scalar Potential Analysis. If vacuum expectation values are aligned,

 $\langle \chi_{\ell} \rangle = (V_{\ell}, 0, 0)$ and $\langle \chi_{\nu} \rangle = (V_{\nu}, V_{\nu}, V_{\nu})$, which are obtained by potential analysis, then

$$M_{I} = \frac{v_{d}v_{T}}{\Lambda} \begin{pmatrix} y_{e} & 0 & 0 \\ 0 & y_{\mu} & 0 \\ 0 & 0 & y_{\tau} \end{pmatrix}$$

$$M_{\nu} = \frac{v_{u}^{2}}{\Lambda} \begin{pmatrix} a+2b/3 & -b/3 & -b/3 \\ -b/3 & 2b/3 & a-b/3 \\ -b/3 & a-b/3 & 2b/3 \end{pmatrix}.$$

where $a = y_{1}V/\Lambda$, $b = y_{2}V_{\nu}/\Lambda$.

$$3_{L} \times 3_{L} \times 3_{flavon} \qquad 3_{L} \times 3_{L} \times 1_{flavon}$$
$$M_{\nu} = \frac{v_{u}^{2}b}{\Lambda} \begin{pmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{pmatrix} - \frac{v_{u}^{2}b}{3\Lambda} \begin{pmatrix} 1 & 1 & 1\\ 1 & 1 & 1\\ 1 & 1 & 1 \end{pmatrix} + \frac{v_{u}^{2}a}{\Lambda} \begin{pmatrix} 1 & 0 & 0\\ 0 & 0 & 1\\ 0 & 1 & 0 \end{pmatrix}$$

Therefore, mixing matrix is tri-bimaximal matrix, and masses are

$$m_1 = rac{v_u^2(a+b)}{\Lambda}, \quad m_2 = rac{v_u^2 a}{\Lambda}, \quad m_3 = -rac{v_u^2(a-b)}{\Lambda}.$$

In order to get Tri-bimaximal Mixing, one needs

O Non-trivial Flavons 3

◎ Additional U(1) or Zn

⊙ VEV Alignment (1,0,0) , (1,1,1)

3 Breaking with tri-bimaximal mixing

T2K, DChooz, Daya Bay suggest us

the breaking with tri-bimaximal paradigm !

Let us show how to go beyond the tri-bi maximal mixing.

Consider Modified A₄ Model to get non-zero θ_{13}

	(l_e, l_μ, l_τ)	e^{c}	μ^{c}	τ^c	$h_{u,d}$	ϕ_l	$\phi_{m{ u}}$	ξ	ξ
SU(2)	2	1	1	1	2	1	1	1	Ψ
A_4	3	1	1''	1'	1	3	3	1	1
Z_3	ω	ω^2	ω^2	ω^2	1	1	ω	ω	

 $3 \times 3 = 3 + 3 + 1 + 1' + 1''$ $\mathbf{3} \times \mathbf{3} \Rightarrow \mathbf{1} = a_1 * b_1 + a_2 * b_3 + a_3 * b_2$ $3 \times 3 \Rightarrow 1' = a_1 * b_2 + a_2 * b_1 + a_3 * b_3$ $3 \times 3 \Rightarrow 1'' = a_1 * b_3 + a_2 * b_2 + a_3 * b_1$ $\begin{array}{c} (\xi) \\ 1 \times 1 \Rightarrow 1 \end{array}, \qquad 1'' \times 1' \Rightarrow 1 \end{array} \qquad \begin{array}{c} (\xi') \\ 1'' \times 1' \Rightarrow 1 \end{array}$ $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \qquad \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \qquad \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

Y. Simizu, M. Tanimoto, A. Watanabe, PTP 126, 81(2011)

$$M_{\nu} = a \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} + b \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} + c \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} + d \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

$$a = \frac{y_{\phi_{\nu}}^{\nu} \alpha_{\nu} v_{u}^{2}}{\Lambda}, \qquad b = -\frac{y_{\phi_{\nu}}^{\nu} \alpha_{\nu} v_{u}^{2}}{3\Lambda}, \qquad c = \frac{y_{\xi}^{\nu} \alpha_{\xi} v_{u}^{2}}{\Lambda}, \qquad d = \frac{y_{\xi'}^{\nu} \alpha_{\xi'} v_{u}^{2}}{\Lambda}$$

There is one relation a = -3b

$$m_1 = a + \sqrt{c^2 + d^2 - cd}$$
$$m_2 = c + d$$
$$m_3 = -a + \sqrt{c^2 + d^2 - cd}$$

 $\Delta m_{\rm atm}^2 \simeq 4(c^2 + d^2 - cd), \quad \Delta m_{\rm sol}^2 \simeq (c+d)^2$

4 Large θ_{13} and the neutrino masses

A₄ model could give non-zero θ_{13} by adding a new flavon A4, 1' and/or 1". However, mass dependence of θ_{13} is not clear.

Daya Bay results (3σ)

 $\sin \theta_{13} = 0.153 \pm 0.014$ Order of Cabbibo angle !?

What does this value of θ_{13} indicate ? Recall $\sin \theta_C \simeq \sqrt{\frac{m_d}{m_s}} \simeq 0.2$

 Θ_{13} could be related to neutrino masses clearly!

Ratio of Neutrino Mass Squared differences

$$\begin{split} \frac{\Delta m_{21}^2}{\Delta m_{31}^2} &= 0.026 - 0.038 \sim \mathcal{O}(\lambda^2) \\ \sqrt{\frac{\Delta m_{21}^2}{\Delta m_{31}^2}} &= 0.160 - 0.196 \sim \mathcal{O}(\lambda) \\ \sqrt{\frac{\Delta m_{21}^2}{\Delta m_{31}^2}} &= 0.40 - 0.44 \sim \mathcal{O}(\sqrt{\lambda}) \\ \lambda = 0.2 \end{split}$$

W.Rodejohann, M.Tanimoto, A.Watanabe, arXiv:1201.4936

The relation of masses and mixing angles is given by the texture zeros !

$$m_{\nu} = U \operatorname{diag}(m_1, m_2, m_3) U^T$$

$$(m_{\nu})_{\alpha\beta} = \sum_{i} U_{\alpha i} m_{i} U_{\beta i}$$

Example

Well known Simple approach: Texture one zero or two zeros!

Suppose normal mass hierachy and neglect smallest m₁, then we have

 $U_{\alpha 2} U_{\beta 2} m_2 + U_{\alpha 3} U_{\beta 3} m_3 = 0$

 $\arg(U_{\alpha 3} U_{\beta 3} U_{\alpha 2}^* U_{\beta 2}^*) = \pi$

m₁**=0**

In the case of $\alpha = \beta = e$, $(m_{\nu})_{ee} = 0$ $\tan^2 \theta_{13} = \sqrt{\frac{\Delta m_{\odot}^2}{\Delta m_A^2}} \sin^2 \theta_{12}$ $\alpha_1 - \alpha_2 \simeq -\frac{1}{2}\delta$

U_{e3} is given by the fourth root !!

In the case of
$$\alpha = e, \quad \beta = \mu, \quad (m_{\nu})_{e\mu} = 0$$

 $|U_{e3}| \simeq \frac{1}{2} \sqrt{\frac{\Delta m_{\odot}^2}{\Delta m_A^2}} \sin 2\theta_{12} \cot \theta_{23} \qquad \alpha_1 - \alpha_2 \simeq \frac{1}{2} (\pi - \delta)$

U_{e3} is given by the square root !!

In the case of $\alpha = e$, $\beta = \tau$, $(m_{\nu})_{e\tau} = 0$, $\cot \theta_{23} \rightarrow \tan \theta_{23}$

 $\mu\mu$, $\mu\tau$ and $\tau\tau$ elements cannot vanish.

W.Rodejohann, M.Tanimoto, A.Watanabe, arXiv:1201.4936

Neutrino Masses Model $\mathbf{S_3} \qquad m_D \simeq \begin{pmatrix} a & 0 \\ b & a \\ 0 & c \end{pmatrix}, \qquad M_R \simeq \begin{pmatrix} M_A & M_B \\ M_B & 0 \end{pmatrix}$ $m_{\nu} \simeq \begin{pmatrix} 0 & a^2 & ac \\ a^2 & 2ab & bc \\ ac & bc & 0 \end{pmatrix} \frac{1}{M_B} - \begin{pmatrix} 0 & 0 & 0 \\ 0 & a^2 & ac \\ 0 & ac & c^2 \end{pmatrix} \frac{M_A}{M_B^2}$ $(m_{v})_{ee} = 0 !!$ **Charged Lepton Masses**

 $-\mathcal{L}_l = y_e \left(\overline{L_1}\phi_1 + \overline{L_2}\phi_2\right)e_R H, + y_\mu \left(\overline{L_1}\phi_2^* + \overline{L_2}\phi_1^*\right)\mu_R H + y_\tau \overline{L_3}\tau_R H + \text{h.c.}$

$$M_l \simeq \begin{pmatrix} y_e \langle \phi_1 \rangle & 0 & 0 \\ 0 & y_\mu \langle \phi_1 \rangle^* & 0 \\ 0 & 0 & y_\tau \end{pmatrix} v$$

Deviation from the maximal θ_{23}

Suppose inverted mass hierachy and neglect smallest m_3 , then we have

$$\alpha = e, \quad \beta = \mu, \quad (m_{\nu})_{e\mu} = 0$$

$$|U_{e3}| \cos \delta \simeq \frac{1}{4} \frac{\Delta m_{\odot}^2}{\Delta m_{\rm A}^2} \frac{\sin 2\theta_{12}}{\tan \theta_{23}}$$

$$\alpha = \mu, \quad \beta = \tau, \quad (m_{\nu})_{\mu\tau} = 0$$
$$|U_{e3}| \cos \delta \simeq \frac{1}{4} \frac{\Delta m_{\odot}^2}{\Delta m_A^2} \frac{\cos 2\theta_{12} \tan \theta_{12}}{\cos^2 \theta_{12} \tan \theta_{23}}$$

Simple Model to get Large θ_{13}

Fukugita, Tanimoto, Yanagida, PLB 562(2003) 273 [arXiv:hep-ph/0303177].

$$m_{E} = \begin{pmatrix} 0 & A_{\ell} & 0 \\ A_{\ell} & 0 & B_{\ell} \\ 0 & B_{\ell} & C_{\ell} \end{pmatrix}, \qquad m_{\nu D} = \begin{pmatrix} 0 & A_{\nu} & 0 \\ A_{\nu} & 0 & B_{\nu} \\ 0 & B_{\nu} & C_{\nu} \end{pmatrix}$$
$$M_{R} = M_{0}\mathbf{I}$$
$$m_{i} = \begin{pmatrix} m_{\nu D}^{T} M_{R}^{-1} m_{\nu D} \end{pmatrix}_{i}$$
$$U = U_{\ell}^{\dagger} Q U_{\nu} \qquad \qquad Q = \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\sigma} & 0 \\ 0 & 0 & e^{i\tau} \end{pmatrix}$$

Fritzsch texture failed in Quark sector!

Lepton Mixing Matrix

sinθ₁₃: input maximal θ₂₃ is excluded Normal Mass Hierarchy

Fukugita, Shimizu, Tanimoto, Yanagida (2012)

Neutrinoless Double Beta Decay

4 - 5.5 meV

CP Violation

Non-Zero Jcp !

Unitarity Triangle $U_{e1}U_{\mu 1}^{*} + U_{e2}U_{\mu 2}^{*} + U_{e3}U_{\mu 3}^{*} = 0$

5 Summary

Large $\theta_{13} \rightleftharpoons 0.15$ suggests \Rightarrow breaking with tri-bimaximal mixing.

 θ_{23} and θ_{12} may be independent neutrino masses.

θ_{13} probably depends on neutrino masses !

More Precise determination of θ_{13} is required in order to clarify the mass dependence.

Specific textures will be tested clearly.