Observation of Reactor Antineutrinos at RENO

Soo-Bong Kim for the RENO Collaboration KNRC, Seoul National University March 29, 2012

Outline

- Introduction
- Experimental setup & detector
- Data-taking & data set
- Calibration
- Event selection
- Efficiency & Background
- Reactor antineutrino prediction
- Results
- Systematic uncertainties
- Summary

Neutrino Oscillation

 $1.27 \Delta m_{13}^2 L$

Ε

Reactor Antineutrino Oscillation

$$P\left(\overline{\nu_e} \to \overline{\nu_e}\right) \approx 1 - \sin^2 2\theta_{13} \sin^2 \left(\frac{1}{2} + \sin^2 \theta_{13} \sin^2 \theta_{13$$

PMNS Neutrino Mixing Angles and CP Violation

Past Efforts for Finding θ_{13}

Chooz (2003) & Palo Verde (2000): No signal

sin²(2θ₁₃) < 0.12 at 90% C.L.

■ T2K : 2.5 σ excess (2011)

 $0.03 < \sin^2(2\theta_{13}) < 0.28$ at 90% C.L. for N.H.

 $0.04 < \sin^2(2\theta_{13}) < 0.34$ at 90% C.L. for I.H.

• MINOS : 1.7 σ excess (2011)

 $0 < \sin^2(2\theta_{13}) < 0.12$ at 90% C.L. for N.H.

 $0.04 < \sin^2(2\theta_{13}) < 0.19$ at 90% C.L. for I.H.

Double Chooz : 1.7 σ measurement (2011)

 $sin^{2}(2\theta_{13}) = 0.086 \pm 0.041(stat.) \pm 0.030(syst.)$

Daya Bay (03. 08. 2012)
 5.2 σ observation
 sin²(2θ₁₃) = 0.092 ±
 0.016(stat.)±0.005(syst.)

RENO Collaboration

(12 institutions and 40 physicists)

- Chonbuk National University
- Chonnam National University
- Chung-Ang University
- Dongshin University
- Gyeongsang National University
- Kyungpook National University
- Pusan National University
- Sejong University
- Seokyeong University
- Seoul National University
- Seoyeong University
- Sungkyunkwan University

서울대 김수봉 교수가 이끄는 RENO 실험팀. 30여년간 관측에 실패한 미지막 중성미자 변환상수를 밝히기 위해 프랑스 중국과 치열한 경주를 벌이고 있다.

RENO Experimental Setup

Contribution of Reactor to Neutrino Flux at Near & Far Detectors

Reactor #	Far (%)	Near (%)	
1	13.73	6.78	
2	15.74	14.93	
3	18.09	34.19	
4	18.56	27.01	
5	17.80	11.50	
6	16.08	5.58	

 Accurate measurement of baseline distances to a precision of 10 cm using GPS and total station

Accurate determination of reduction in the reactor neutrino fluxes after a baseline distance, much better than 0.1%

RENO Detector

- 354 ID +67 OD 10" PMTs
- Target : 16.5 ton Gd-LS, R=1.4m, H=3.2m
- Gamma Catcher: 30 ton LS, R=2.0m, H=4.4m
- Buffer: 65 ton mineral oil, R=2.7m, H=5.8m
- Veto : 350 ton water, R=4.2m, H=8.8m

Summary of Detector Construction

- 2006. 03 : Start of the RENO project
- 2008. 06 ~ 2009. 03 : Civil construction including tunnel excavation
- 2008. 12 ~ 2009. 11 : Detector structure & buffer steel tanks completed
- 2010. 06 : Acrylic containers installed
- 2010. 06 ~ 2010. 12 : PMT test & installation
- 2011. 01 : Detector closing/ Electronics hut & control room built
- 2011. 02 : Installation of DAQ electronics and HV & cabling
- 2011. 03 ~ 06 : Dry run & DAQ debugging
- 2011. 05 ~ 07 : Liquid scintillator production & filling
- 2011.07 : Detector operation & commissioning
- 2011. 08 : Start data-taking

PMT Mounting (2010. 8~10)

PMT Mounting (2010. 8~10)

Detector Closing (2011.1)

Detection of Reactor Antineutrinos

Liquid(Gd-LS/LS/MO/Water) Production & Filling (May-July 2011)

1D/3D Calibration System

 Calibration system to deploy radioactive sources in 1D & 3D directions

□ Radioactive sources : ¹³⁷Cs, ⁶⁸Ge, ⁶⁰Co, ²⁵²Cf

□ Laser injectors

Data Acquisition System

- 24 channel PMT input to ADC/TDC
- 0.1pC, 0.52nsec resolution
- ~2500pC/ch large dynamic range
- No dead time (w/o hardware trigger)

->

• Fast data transfer via Ethernet R/W

Data-Taking & Data Set

- Data taking began on Aug. 1, 2011 with both near and far detectors.
- Data-taking efficiency > 90%.
- Trigger rate at the threshold energy of 0.5~0.6 MeV : 80 Hz
- Data-taking period : 213 days
 Aug. 11, 2011 ~ Mar. 10, 2012

PMT Threshold & Gain Matching

- PMT gain : set 1.0x10⁷ using a Cs source at center
- Gain variation among PMTs : 3% for both detectors.

 PMT threshold : determined by a single photoelectron response using a Cs source at the center

Energy Calibration

Energy Scale Calibration

Detector Stability & Identity

IBD Event Signature and Backgrounds

IBD Event Signature

$$\bar{\nu}_e + p \to e^+ + n$$

Prompt signal (e⁺) : 1 MeV 2γ's + e⁺ kinetic energy (E = 1~10 MeV)

Delayed signal (n): 7.8 MeV γ's from neutron's capture by Gd
 ~28 μs (0.1% Gd) in LS

- Random coincidence between prompt and delayed signals (uncorrelated)
- ⁹Li/⁸He β-n followers produced by cosmic muon spallation
- Fast neutrons produced by muons, from surrounding rocks and inside detector (n scattering : prompt, n capture : delayed)

IBD Event Selection

 \Box Reject flashers and external gamma rays : $Q_{max}/Q_{tot} < 0.03$

□ Muon veto cuts : reject events after the following muons

- (1) 1 ms after an ID muon with E > 70 MeV, or with 20 < E < 70 MeV and OD NHIT > 50
- (2) 10 ms after an ID muon with E > 1.5 GeV

 \square Coincidence between prompt and delayed signals in 100 μs

- E_{prompt} : 0.7 ~ 12.0 MeV, E_{delayed} : 6.0 ~ 12.0 MeV
- coincidence : 2 μ s < Δ t_{e+n} < 100 μ s

Multiplicity cut : reject pairs if there is a trigger in the preceding 100 ms window

Random Coincidence Backgrounds

□ Calculation of accidental coincidence

$$N_{accidental} = N_{delayed} \times \left(1 - \exp^{\left[-R_{prompt}(Hz) \times \Delta T(s)\right]}\right) \pm \frac{N_{accidental}}{\sqrt{N_{delayed}}}$$

- $\Delta T = 100 \text{ ms time window}$
- Near detector :

$$R_{\text{prompt}} = 8.8 \text{ Hz}, \ N_{\text{delay}} = 5100/\text{day} \rightarrow BG_{accidental}^{near} = 4.51 \pm 0.06 / day$$

Far detector :

$$R_{\text{prompt}} = 10.7 \text{ Hz}, \ N_{\text{delay}} = 674/\text{day} \rightarrow BG_{accidental}^{far} = 0.72 \pm 0.03 / day$$

⁹Li/⁸He β-n Backgrounds

□ Find prompt-delay pairs after muons, and obtain their time interval distribution with respect to the preceding muon.

• Near detector : BG_{r+1}^{near}

$$G_{Li/He}^{near} = \pm / da_{.}^{near}$$

• Far detector :

$$BG_{Li/He}^{far} = \pm / day$$

Fast Neutron Backgrounds

□ Obtain a flat spectrum of fast neutron's scattering with proton, above that of the prompt signal.

• Near detector : $BG_{neutron}^{near} = \pm / day$

• Far detector : $BG_{neutron}^{far} = \pm / day$

Spectra & Capture Time of Delayed Signals

Measured Spectra of IBD Prompt Signal

Expected Reactor Antineutrino Fluxes

Reactor neutrino flux

$$\Phi(E_v) = \frac{P_{th}}{\sum_{i \text{ sotopes}} f_i \cdot E_i} \sum_{i}^{i \text{ sotopes}} f_i \cdot \phi_i(E_v)$$

- P_{th} : Reactor thermal power provided by the YG nuclear power plant
- f_i: Fission fraction of each isotope determined by reactor core simulation of Westinghouse ANC
- $\phi_i(E_v)$: Neutrino spectrum of each fission isotope
 - [* P. Huber, Phys. Rev. C84, 024617 (2011)
 - T. Mueller et al., Phys. Rev. C83, 054615 (2011)]
- E_i: Energy released per fission
 - [* V. Kopeikin et al., Phys. Atom. Nucl. 67, 1982 (2004)]

Isotopes	James	Kopeikin	
²³⁵ U	201.7±0.6	201.92±0.46	
²³⁸ U	205.0 ± 0.9	205.52 ± 0.96	
²³⁹ Pu	210.0 ± 0.9	209.99 ± 0.60	
²⁴¹ Pu	212.4±1.0	213.60 ± 0.65	

Observed Daily Averaged IBD Rate

Reduction of Systematic Uncertainties

- Detector related :
 - "Identical" near and far detectors
 - Careful calibration
- Reactor related :
 - Relative measurements with near and far detectors

$$\frac{N_{far}^{\nu}}{N_{near}^{\nu}} = \left(\frac{L_{near}}{L_{far}}\right)^{2} \left(\frac{N_{far}^{p}}{N_{near}^{p}}\right) \left(\frac{\epsilon_{far}}{\epsilon_{near}}\right) \left[\frac{P(\bar{\nu}_{e} \to \bar{\nu}_{e}; E, L_{far})}{P(\bar{\nu}_{e} \to \bar{\nu}_{e}; E, L_{near})}\right]$$
Neutrino
Neutrino
1/r²
Number
of
protons
Detection
efficiency
Yield of sin²(2\theta_{13})

Efficiency & Systematic Uncertainties

	Reactor			
		Uncorrelated	Correlated	
	Thermal power	0.5%		
	Fission fraction	0.7%	—	
	= Fission reaction cross section	—	1.9%	
Drevent evener ext	 Reference energy spectra 	—	0.5%	
Frompt energy cut	Energy per fission	—	0.2%	
Gd capture fraction	Combined	0.9%	2.0%	
Delayed energy cut	Detection			
Time coincidence cut		Uncorrelated	Correlated	
Spill-in	IBD cross section	_	0.2%	
$\overline{\mathrm{Common}}$	[–] Target protons	0.1%	0.5%	
Detector	= Prompt energy cut	0.01%	0.1%	
$\frac{\text{Detector}}{\text{Muon voto }\log\left(\delta\right)}$	- Flasher cut	0.01%	0.1%	
Multiplicity out loss $(\delta_{\mu-veto})$	Gd capture ratio	0.1%	0.7%	
$\frac{1}{T_{r+1}} = \frac{1}{T_{r+1}}$	$\overline{77}$ Delayed energy cut	0.05%	0.5%	
	$\stackrel{(\mathfrak{C})}{=}$ Time coincidence cut	0.01%	0.5%	
	Spill-in	0.03%	1.0%	
	Muon veto cut	0.02%	0.1%	
	Multiplicity cut	0.02%	0.05%	
	Combined	0.2%	1.5%	

Summary

- RENO started data taking with both near and far detectors from August 1, 2011..
- RENO will published their first result soon.
 - Rapid detector construction, data-taking & data-analysis
 - Satisfactory detector performance.
 - Detector calibration and comparison of ND & FD are performed.
 - IBD selection and background estimation completed.
 - Detection efficiency and systematic uncertainty understood.
- RENO started to get an oscillation signal from the late 2011, and has been under a sanity check and an accurate background estimation based on the reported schedules of the other experiments.

A bright future for the neutrino physics due to a large value of θ_{13} !!!