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Past Efforts for Finding θ13  

 Chooz (2003) & Palo Verde (2000):  No signal 

 sin2(2θ13) < 0.12  at 90% C.L.  

 T2K :  2.5 σ excess  (2011)   

 0.03 < sin2(2θ13) < 0.28  at 90% C.L. for N.H. 

 0.04 < sin2(2θ13) < 0.34  at 90% C.L. for I.H. 

 MINOS :  1.7 σ excess  (2011)   

 0 < sin2(2θ13) < 0.12  at 90% C.L. for N.H. 

 0.04 < sin2(2θ13) < 0.19  at 90% C.L. for I.H. 

 Double Chooz :  1.7 σ measurement (2011)   

 sin2(2θ13) = 0.086 ± 0.041(stat.) ± 0.030(syst.) 

 Daya Bay (03. 08. 2012)  

sin2(2θ13) = 0.092 ± 
0.016(stat.)±0.005(syst.) 

5.2 σ observation 
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RENO Collaboration 



RENO Experimental Setup 

Far Detector 

Near Detector 



Contribution of Reactor to Neutrino Flux  
at  Near & Far Detectors 

Reactor # Far ( % ) Near (% ) 
1 13.73   6.78 
2 15.74 14.93 
3 18.09 34.19 
4 18.56 27.01 
5 17.80 11.50 
6 16.08   5.58 

 Accurate measurement of baseline distances to a precision of 
10 cm using GPS and total station 

 Accurate determination of reduction in the reactor neutrino 
fluxes after a baseline distance, much better than 0.1%  



RENO Detector 

 354 ID +67 OD 10” PMTs  
 Target : 16.5 ton Gd-LS,   R=1.4m, H=3.2m 
 Gamma Catcher :  30 ton LS,   R=2.0m, H=4.4m 
 Buffer :  65 ton mineral oil,   R=2.7m, H=5.8m 
 Veto : 350 ton water,   R=4.2m, H=8.8m 



 

 2006. 03 : Start of the RENO project 
 2008. 06 ~ 2009. 03 : Civil construction including tunnel excavation 
 2008. 12 ~ 2009. 11 : Detector structure & buffer steel tanks 
                                      completed 
 2010. 06 : Acrylic containers installed 
 2010. 06 ~ 2010. 12 : PMT test & installation 
 2011. 01 : Detector closing/ Electronics hut & control room built 
 2011. 02 : Installation of DAQ electronics and HV & cabling 
 2011. 03 ~ 06 : Dry run & DAQ debugging 
 2011. 05 ~ 07 : Liquid scintillator production & filling 
 2011. 07 : Detector operation & commissioning   
 2011. 08 : Start data-taking 

Summary of Detector Construction 



PMT Mounting (2010. 8~10) 



PMT Mounting (2010. 8~10) 

http://reno01.snu.ac.kr/~reno/wiki/images/b/b1/IMG02_07.JPG


Detector Closing (2011. 1) 

Near : Jan. 21, 2011 

Far : Jan. 24, 2011 
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Detection of Reactor Antineutrinos 

+ p     D  +  γ  (2.2 MeV)  

(prompt signal) 

~180 µs 

~28 µs 
(0.1% Gd) 

(delayed signal) 

+ Gd    Gd +  γ‘s (8 MeV)  

 Neutrino energy measurement  



 Recipe of Liquid Scintillator 

Aromatic Solvent & 
Flour 

WLS Gd-compound 

LAB PPO + 

Bis-MSB 

0.1%  Gd+(TMHA)3 

(trimethylhexanoic acid) 

CnH2n+1-C6H5 (n=10~14) 
Gd Loaded Liquid Scintillator 

* Stable light yield over the time period :  ~250 pe/MeV  

* Measured cosmic induced  
neutron’s Gd capture time 



Liquid(Gd-LS/LS/MO/Water) Production & Filling 
(May-July 2011) 

Water filling for Veto  

Gd-LS filling for Target  

Gd Loaded Liquid Scintillator  

Gd Loaded Liquid Scintillator  LS filling for Gamma Catcher 



1D/3D Calibration System 

 Calibration system to deploy 
radioactive sources in 1D & 
3D directions 

 Radioactive sources :       
137Cs, 68Ge, 60Co, 252Cf 

 Laser  injectors  



• 24 channel PMT input to ADC/TDC 
• 0.1pC, 0.52nsec resolution 
• ~2500pC/ch  large dynamic range 
• No dead time (w/o hardware trigger) 
• Fast data transfer via Ethernet R/W 

Data Acquisition System 



Data-Taking & Data Set 

  Data taking began on Aug. 1, 2011 
with both near and far detectors.  

 Data-taking efficiency > 90%. 

 Trigger rate at the threshold energy 
of 0.5~0.6 MeV : 80 Hz 

  Data-taking period :  213 days                                     
Aug. 11, 2011 ~ Mar. 10, 2012  

A candidate for a 
neutron capture 
by Gd 

2 MeV 6 MeV 

40K 

10 MeV 

208Tl 

n capture by Gd 

Event  rate before reduction 

  Data-taking efficiency                                



PMT Threshold & Gain Matching 

Gain (10 7) 

 PMT gain : set 1.0x107 using a Cs source at center 
  Gain variation among PMTs : 3% for both detectors. 

Charge(counts) 

discri. thr. 

-0.4mV 
-0.5mV 
-0.6mV 
-0.7mV 
-1.0mV 

  PMT threshold :  determined by 
a single photoelectron response 
using a Cs source at the center 



-Near Detector 
-Far Detector 

Cs 137 
(662 keV) 

Energy Calibration 

Co 60 
(2,506 keV) 

Ge 68 
(1,022 keV) 

Cf 252 
(2.2/7.8 MeV) 
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Energy Scale Calibration 

 ~ 250 pe/MeV  (sources at center) 

 Identical energy response (< 0.1%)  of ND & FD 
 Slight  non-linearity observed 
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Detector Stability & Identity 

- Near Detector 
- Far Detector 
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 Cosmic muon induced neutron’s capture by H 

 IBD candidate’s delayed signals (capture on Gd) 

- Near Detector 
- Far Detector D
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IBD Event Signature and Backgrounds 
 IBD Event Signature 

 Prompt signal (e+) : 1 MeV 2γ’s + e+ kinetic energy (E = 1~10 MeV)  

 Delayed signal (n) :  7.8 MeV γ’s from neutron’s capture by Gd 
                                    ~28 µs (0.1% Gd) in LS 

  Prompt Energy    Delayed Energy  

 Backgrounds 

 Random coincidence between prompt and delayed signals (uncorrelated)  

 9Li/8He β-n followers produced by cosmic muon spallation                                           

   Fast neutrons produced by muons,  from surrounding rocks and inside 
detector   (n scattering : prompt,    n capture : delayed)                                    



IBD Event Selection 

 Reject flashers and external gamma rays :   Qmax/Qtot < 0.03 

 Muon veto cuts :   reject events after the following muons 

   (1) 1 ms after an ID muon with E > 70 MeV, or  with 20 < E < 70 
MeV and OD NHIT > 50 

   (2) 10 ms after an ID muon with E > 1.5 GeV  

 Coincidence between prompt and delayed signals in 100 µs 

     - Eprompt : 0.7 ~ 12.0 MeV,    Edelayed : 6.0 ~ 12.0 MeV 

     -  coincidence :  2 µs < ∆te+n < 100 µs 

  Multiplicity cut :    reject pairs if there is a trigger in the preceding   
100 ms window 



Random Coincidence Backgrounds 

 Calculation of accidental coincidence  

( )
delayed

accidentalsTHzR
delayedaccidental N

NNN prompt ±−×= ∆×− )]()([exp1

 ∆T = 100 ms time window 

 Near detector :     

    Rprompt = 8.8 Hz,  Ndelay = 5100/day  →                                          

  Far detector :  

    Rprompt = 10.7 Hz,  Ndelay = 674/day  →                                 

daynear
accidental

BG /0.064.51±=

dayfar
accidental

BG /0.030.72 ±=



9Li/8He β-n Backgrounds 

 Find prompt-delay pairs after muons,  and obtain their time interval 
distribution with respect to the preceding muon. 

  Near detector : 

                                              

  Far detector :  

                                 

daynear
HeLi

BG /      
/

±=

dayfar
HeLi

BG /      
/

±=

Time interval (ms) 

 9Li time interval distribution 

Energy (MeV) 

 9Li energy spectrum 



Fast Neutron Backgrounds 

 Obtain a flat spectrum of fast neutron’s scattering with proton,  
above that of the prompt signal.  

 Near detector :     

                                              

  Far detector :  

                                   

daynear
neutron

BG /         ±=

dayfar
neutron

BG /          ±=

Near detector Far detector 



Spectra & Capture Time of Delayed Signals 

Near  Detector 
Far  Detector 

 Observed spectra of IBD delayed signals  
 τ  = 27.8 ± 0.2 µsec 

Near Detector 

 τ  = 27.6 ± 0.4 µsec 

Far Detector 



Measured Spectra of IBD Prompt Signal 

Near Detector 
148387  

Far Detector 
16306  



 Expected Reactor Antineutrino Fluxes 

  Reactor neutrino flux ∑
∑
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 - Pth : Reactor thermal power provided by the YG nuclear power plant 
 - fi :  Fission fraction of each isotope determined by reactor core 

simulation of Westinghouse ANC 
 - φi(Eν) : Neutrino spectrum of each fission isotope 
               [* P. Huber, Phys. Rev. C84, 024617 (2011) 
                  T. Mueller et al., Phys. Rev. C83, 054615 (2011)] 
 - Ei : Energy released per fission 
              [* V. Kopeikin et al., Phys. Atom. Nucl. 67, 1982 (2004)] 



Observed Daily Averaged IBD Rate 



Reduction of Systematic Uncertainties 

 Detector related : 
    - “Identical” near and far detectors 
    - Careful calibration 

 Reactor related : 
    - Relative measurements with near and far detectors 

Neutrino 
flux 

1/r2 Number 
of 
protons 

Detection 
efficiency 

Yield of sin2(2θ13)    



Efficiency & Systematic Uncertainties 



Summary 

  RENO started data taking with both near and far detectors from 
August 1, 2011.. 

 A bright future for the neutrino physics due to a large value of θ13 !!!    

 RENO will published their first result soon.  
   - Rapid detector construction, data-taking & data-analysis 
   - Satisfactory detector performance. 
   - Detector calibration and comparison of ND & FD are performed. 
   - IBD selection and background estimation completed. 
   - Detection efficiency and systematic uncertainty understood. 

 RENO started to get  an oscillation signal from the late 2011, and 
has been under a sanity check and an accurate background 
estimation based on the reported schedules of the other 
experiments. 
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