

First Measurement of sin²20₁₃ at Daya Bay.

Shaomin CHEN, Tsinghua University On behave of the Day Collaboration

大亚湾反应堆中微子实验站 Daya Bay Reactor Neutrino Experiment Station

References Result: arXiv:1203.1669 Detector: arXiv:1202.6181 Proposal: hep-ex/0701029

2012-03-29

Outline

- Solution Overview of θ₁₃: from theories to experiments
- Daya Bay Experiment
- > Data analysis
- **>** Determination of $\sin^2 2 \theta_{13}$
- Summary and outlook

Overview of θ_{13} : from **theories to experiments**

Lepton flavor models

GUT models

Hints of θ13≠0 from Global Fits

Hints of $\theta_{13} \neq 0$ **from Experiments**

Initiate DayaBay Project in China

Meeting brief for the 250th Xiangshan (Fragrant Hill Hotel) Scientific Meeting (2005)

- • •
- 2. Neutrino mixing angle θ_{13} is one of the fundamental parameters in nature,...a key issue to be resolved.
- **3....have mature technology and get strong support from Daya** Bay Nuclear Power Plant. ... get preparations ... to complete this experiment.
- **4.** International competition in determining θ_{13} is very vigorous,...getting the project approved promptly is a key to win the competition.

Daya Bay Experiment

Daya Bay Power Plant Complex

Three-pair reactor cores: 2.9 × 6=17.4GWth
 Each core produces 6 × 10²⁰ anti-v_e's/s
 Mountains near by

Survival probability:

$$\begin{aligned} P(\bar{v}_{e} \rightarrow \bar{v}_{e}) \\ &= 1 - \cos^{4} \theta_{13} \sin^{2} 2\theta_{12} \sin^{2} (1.267 \cdot \Delta m_{21}^{2} \cdot \frac{L}{E}) \\ &- \cos^{2} \theta_{12} \sin^{2} 2\theta_{13} \sin^{2} (1.267 \cdot \Delta m_{31}^{2} \cdot \frac{L}{E}) - \sin^{2} \theta_{12} \sin^{2} 2\theta_{13} \sin^{2} (1.267 \cdot \Delta m_{32}^{2} \cdot \frac{L}{E}) \\ &+ \frac{1}{2} \sin^{2} 2\theta_{13} \sin^{2} \theta_{12} [\cos \frac{1.267 (\Delta m_{31}^{2} - \Delta m_{21}^{2})L}{2E} - \cos \frac{1.267 \Delta m_{31}^{2}L}{2E}] \end{aligned}$$

Approximated to $P(\bar{v}_e \rightarrow \bar{v}_e)$ $\approx 1 - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 (1.267 \cdot \Delta m_{21}^2 \cdot \frac{L}{E}) - \sin^2 2\theta_{13} \sin^2 (1.267 \cdot \Delta m_{32}^2 \cdot \frac{L}{E})$ Well measured by KamLAND

How to Measure \sin^2 2\theta_{13}?

Baseline Selection

12

Experimental Layout

Neutrino Detection at DayaBay

Reaction: $\overline{v}_e + p \rightarrow e^+ + n$ Prompt signal: $e^+ + e^- \rightarrow 2\gamma$'s $(E_{e^+} > 2m_e = 1.022 \text{MeV})$ Delayed signal: $n + \text{Gd} \rightarrow \text{Gd}' + \gamma$'s $(\sum E_{\gamma} \sim 8\text{MeV}, \tau_0 \sim 28\mu s)$ Delayed signal: $n + p \rightarrow d + \gamma$ $(E_{\gamma} = 2.2 \text{MeV}, \tau_0 \sim 180 \mu s)$

Neutrino energy: Threshold=1.8 MeV $E_{\overline{v}} \cong T_{a^+} + T_n + (M_n - M_p) + m_{a^+}$

> Antineutrino Interaction Rate (events/day per AD module, 100%eff.)

Daya Bay near site	960
Ling Ao near site	760
Far site	90

2012-03-29

Anti-neutrino Detector

□ Three zones modular structure:

- Target: 20t, 1.6m Gd-loaded scintillator
- γ-catcher: 20t, 45cm normal scintillator
- Buffer shielding: 40t, 45cm oil
- Reflector at top and bottom
- **192 8"PMT/module**

DMT coverage: 12%(with reflector)

Automatic Calibration Unit

Three Z axis:

– Center, edge, γ-catcher

Each axis with 3 sources:

- LED
 - t₀, gain and relative QE
- ⁶⁸Ge (2×0.511 MeV γ's)
 - Threshold & non-linearity...
- ${}^{241}Am {}^{-13}C + {}^{60}Co (1.17 {+} 1.33 MeV \gamma's)$
 - Neutron capture time, ...
 - Energy scale, response function, ...

Once per week

Muon Veto Detector

FEE and Trigger System

Data Acquisition System

Antineutrino Detector Assembly

Detector Filling

Detectors are filled from same reservoirs *"inpairs "* within < 2 weeks.

Target mass determination error ± 3kg out of 20,000 <0.03% during data taking period

Detector Deployment

Radioactivity Background Shielding

Trigger performance

Spectrum for all AD triggers

Unexpected PMT Feature

Unexpected Bkg from ACU

²⁴¹Am-¹³C leakage
 Uncorrelated: 230evts/day/AD
 Correlated: 0.2evts/day/AD

Detector live days

Current Oscillation Analysis:

- Dec. 24, 2011 Feb. 17, 2012
- All 3 halls (6 ADs) operating
- DAQ uptime: >97%
- Antineutrino data: ~89%

Two Detector Comparison:

- Sep. 23, 2011 Dec. 23, 2011
- Side-by-side comparison
- Demonstrated detector systematics better than requirements.
- Details presented in: arXiv:1202.6181 (2012)

Data Analysis

Motivation: Conceal the true value of $sin^2 2\theta_{13}$

Parameter	Set uncertainty	Actual precision	
Target mass	0.5%	0.1%	
Baseline	5 m	30cm	
Reactor flux	10%	0.13%	

Nominal values initially assigned with large uncertainties.
 Precise values provided when all the analyses are finalized and frozen.

$\frac{N_{\rm f}}{N_{\rm n}} = \left(\frac{N_{\rm p,f}}{N_{\rm p,n}}\right) \left(\frac{L_{\rm n}}{L_{\rm f}}\right)^2 \left(\frac{\epsilon_{\rm f}}{\epsilon_{\rm n}}\right) \left[\frac{P_{\rm sur}(E,L_{\rm f})}{P_{\rm sur}(E,L_{\rm n})}\right]$

Background Classification

20

10⁴

10³

10²

10

Multiplicity Cuts

Multiplicity cut Efficiency = $\varepsilon_1 \times \varepsilon_2 \times \varepsilon_3$

Accidental Background

Fast Neutron Background

⁸He/⁹Li Background

Selection Criteria

Pre-selection

– No flasher + no trigger (-2 $\mu s,$ 200 $\mu s)$ to a WP muon

Neutrino event selection

- Multiplicity cuts
 - $(t_n T_e) < 200 \ \mu s$
 - No triggers before e⁺ and after n
- Muon veto cuts
 - 1s after an AD shower muon
 - 1ms after an AD muon
 - 0.6ms after a WP muon

IBD Reaction Positions

IBD Candidates at Each Hall

Data Set Summary

	AD1	AD2	AD3	AD4	AD5	AD6
Antineutrino candidates	28935	28975	22466	3528	3436	3452
DAQ live time (day)	49.5530		49.4971	48.9473		
Efficiency	0.8019	0.7989	0.8363	0.9547	0.9543	0.9538
Accidentals (/day)	9.82 ±0.06	9.88 ±0.06	$7.67 \\ \pm 0.05$	3.29 ±0.03	3.33 ±0.03	3.12 ±0.03
Fast neutron (/day)	0.84 ±0.28	$\begin{array}{c} \textbf{0.84} \\ \pm \textbf{0.28} \end{array}$	0.74 ± 0.44	0.04 ±0.04	0.04 ± 0.04	$\begin{array}{c} \textbf{0.04} \\ \pm \textbf{0.04} \end{array}$
8He/9Li (/day)	3.1 ± 1.6		1.8 ± 1.1		0.16 ± 0.11	
Am-C corr. (/day)	0.2 ± 0.2					
¹³ C(α, n) ¹⁶ O (/day)	0.04 ±0.02	$\begin{array}{c} \textbf{0.04} \\ \pm \textbf{0.02} \end{array}$	0.035 ± 0.02	0.03 ±0.02	$\begin{array}{c} 0.03 \\ \pm 0.02 \end{array}$	$\begin{array}{c} 0.03 \\ \pm 0.02 \end{array}$
Antineutrino rate (/day) 2012-03-29	714.17 ±4.58	717.86 ±4.60	532.29 ±3.82	71.78 ±1.29	69.80 ±1.28	70.39 ±1.28

Determination of $\sin^2 2 \theta_{13}$

Distances from Reactors to ADs

Detailed Survey

- GPS above ground
- Total Station underground
- Final precision: 28mm

Validation

- Three independent calculations
- Cross-check survey
- Consistent with reactor plant and design plans

Reactor Antineutrino Flux

Flux estimated using:

$$S(E_v) = \frac{W_{th}}{\sum_i (f_i / F)e_i} \sum_i^{istopes} (f_i / F)S_i(E_v)$$

Reactor operators provide:

- Thermal power data: W_{th}
- Relative isotope fission fract.: f_i

✓ Energy released/fission: *e_i*

V. Kopekin et al., PAN 67, 1892 (2004)

✓ Anti-v_e spectra/fission: S_i(E_v) P. Huber, PRC84, 024617 (2011) T. Mueller et al., PRC83, 054615 (2011) A. A. Hahn et al., PLB218, 365 (1989) P. Vogel et al., PRC24, 1543 (1981)

K. Schreckenbach et al., PLB160, 325 (1985)

Flux model has negligible impact on far vs. near oscillation measurement

Antineutrino Rate vs. Time

- Detected rate strongly correlated with reactor flux expectations.
- Predicted Rate:
 - Assume no oscillation.
 - Normalization is determined by fit to data.
 - Absolute normalization is within a few percent of expectations.

Uncertainty Summary

	Dete	ctor		
	Efficiency	Correlated	Uncorrelated	For near/far oscillation,
Target Protons		0.47%	0.03%	only uncorrelated
Flasher cut	99.98%	0.01%	0.01%	uncertainties are used
Delayed energy cut	90.9%	0.6%	0.12%	uncertainties are asea.
Prompt energy cut	99.88%	0.10%	0.01%	
Multiplicity cut		0.02%	<0.01%	
Capture time cut	98.6%	0.12%	0.01%	Largest systematics are
Gd capture ratio	83.8%	0.8%	<0.1%	smaller than far site
Spill-in	105.0%	1.5%	0.02%	statistics (~1%)
Livetime	100.0%	0.002%	< 0.01%	
Combined	78.8%	1.9%	0.2%	
	Rea	ctor		- ~
Correlated Uncorrelated			related	Influence of uncorrelated
Energy/fission	0.2%	Power	0.5%	reactor systematics
$\overline{\nu}_{e}$ /fission	3%	Fission fraction	n 0.6%	reduced by far vs. near
		Spent fuel	0.3%	measurement.
Combined ⁹	3%	Combined	0.8% 🖌	48

Far/Near Ratio

$R = 0.940 \pm 0.011 \text{ (stat)} \pm 0.004 \text{ (syst)}$

 $sin^{2}2\theta_{13}$ = 0.092 ± 0.016 (stat) ± 0.005 (syst)

 $sin^{2}2\theta_{13} = 0$ excluded at 5.2\sigma

Asymmetric CI in θ₁₃

Where Are We Now?

$\sin^2 2\theta_{13} = 0.092 \pm 0.016 (\text{stat}) \pm 0.005 (\text{syst})$

Daya Bay Goal for 3 years

3/29/2012

The Daya Bay Collaboration

Political Map of the World, June 1999

North America (16)

LBNL, BNL, Caltech, Iowa State Univ., Illinois Inst. Tech., Princeton, RPI, Siena, UC-Berkeley, UCLA, Univ. of Cincinnati, Univ. of Houston, Univ. of Wisconsin-Madison, Univ. of Illinois-Urbana-Champaign, Virginia Tech., William & Mary Un ~230 Collaborators

Asia (20)

 IHEP, Beijing Normal Univ., Chengdu Univ. of Sci. and Tech., CGNPG, CIAE, Dongguan Univ.Tech., Nanjing Univ., Nankai Univ., NCEPU, Shandong Univ., Shanghai Jiao tong Univ., Shenzhen Univ., Tsinghua Univ., USTC, Zhongshan Univ.,
 Univ. of Hong Kong, Chinese Univ. of Hong Kong, National Taiwan Univ., National Chiao Tung Univ., National United Univ.

Roadmap of Daya Bay

- > 2005.04: Got green light at 250th Xiangshan Meeting
- > 2006.10:Passed DOE scientific review
- > 2007.01:CDR released (hep-ex/0701029)
- > 2007.10: Ground breaking ceremony
- > 2009.07: Planed to deploy first detector
 - > 2011.08.15: EH1 started operation
- > 2010.09: Planed to take data with final configuration
 - > 2011.11.05: EH2 started data taking
 - > 2011.12.24: Took data with 2-1-3 configuration
 - > 2012.06: Expected with final configuration

Summary and Outlook

✓ An unambiguous observation of electronantineutrino disappearance at Daya Bay

 $R = 0.940 \pm 0.011 \text{ (stat)} \pm 0.004 \text{ (syst)}$

Interpretation of disappearance as neutrino oscillation yields:

 $\sin^2 2\theta_{13} = 0.092 \pm 0.016 \text{ (stat)} \pm 0.005 \text{ (syst)}$

ruling out zero at 5.2 standard deviations.
✓ More statistics expected before this June
✓ Installation of final pair of ADs this summer