T2K v_e appearance search

中山 祥英

東京大学宇宙線研究所 神岡宇宙素粒子研究施設

2012年3月29日 第25回宇宙ニュートリノ研究会 @東大宇宙線研 Three flavor neutrino oscillation

$$\begin{aligned} & \text{Situation before T2K} \\ & V_{e} \\ & v_{\mu} \\ & v_{\tau} \end{aligned} = U_{PMNS} \begin{pmatrix} v_{1} \\ v_{2} \\ v_{3} \end{pmatrix} \\ & U_{PMNS} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \end{aligned}$$

6 oscillation parameters 0

ignoring Majorana phases

3 mixing angles (θ_{12} , θ_{23} , θ_{13}) + 1 CP phase (δ)

+ 2 mass differences ($\Delta m_{12}^2, \Delta m_{23}^2$)

$\theta_{12} = 34^{\circ} \pm 3^{\circ}$	$\theta_{23} = 45^{\circ} \pm 5^{\circ}$	$\theta_{13} < 11^{\circ}$
$\Delta m^2_{42} \sim 8 \times 10^{-5} (eV^2)$	$ \Delta m^2_{22} \sim 2.5 \times 10^{-3} (eV^2)$	(sin ² 2 $\theta_{13} < 0.15$)
solar/reactor v	atmospheric/accelerator v	reactor/accelerator v

Only upper limit on $\theta_{13} \rightarrow \theta_{13}=0? \neq 0?$ unknown.

Why θ_{13} ?

- o The last unknown mixing angle
- O Non-zero θ_{13} will open possibility to discover the CP violation in the lepton sector and also reveal the neutrino mass hierarchy

Non-zero θ_{13} hunting around the world

θ_{13} measurements (other than solar-v and atm-v)

• Accelerator neutrino experiments : v_e appearance

$$P(\nu_{\mu} \rightarrow \nu_{e}) \approx \sin^{2}(2\theta_{13}) \sin^{2}\theta_{23} \sin^{2}(\frac{1.27\Delta m_{31}^{2}L(km)}{E_{\nu}(GeV)})$$
 leading

$$+ 8C_{13}^2 S_{12} S_{13} S_{23} (C_{12} C_{23} \cos \delta - S_{12} S_{13} S_{23}) \cos \Phi_{32} \cdot \sin \Phi_{31} \cdot \sin \Phi_{21}$$
CPC
$$- 8C_{13}^2 C_{12} C_{23} S_{12} S_{13} S_{23} \sin \delta \sin \Phi_{32} \cdot \sin \Phi_{31} \cdot \sin \Phi_{21}$$
CPV

$$+ 4S_{12}^2C_{13}^2 \left(C_{12}^2C_{23}^2 + S_{12}^2S_{23}^2S_{13}^2 - 2C_{12}C_{23}S_{12}S_{23}S_{13}\cos\delta\right)\sin^2\Phi_{21} \text{ solar} \\ - 8C_{13}^2S_{13}^2S_{23}^2 \left(1 - 2S_{13}^2\underline{aL}_{4E_{\nu}}\cos\Phi_{32}\sin\Phi_{31}\right) \text{ matter effect}$$

- → Sensitive to $\delta_{\rm CP}$ and mass hierarchy
- **O** Reactor neutrino experiments : $\overline{\nu}_e$ disappearance

$$P(\overline{\nu}_e \rightarrow \overline{\nu}_e) \approx 1 - \sin^2(2\theta_{13}) \sin^2(\frac{1.27\Delta m_{31}^2 L(m)}{E_{\nu}(MeV)})$$

→ Pure θ_{13} measurement

T2K (Tokai-to-Kamioka) experiment

Primary goals :

- ★ Discovery of ν_e appearance by θ₁₃≠0 Sensitivity >10 times better than CHOOZ limit
- Precision measurement of ν_μ disappearance $\delta(\Delta m^2_{23}) \sim 1 \times 10^{-4} \text{ eV}^2$, $\delta(\sin^2 2\theta_{23}) \sim 0.01$

Off-axis v beam

- Intense narrow-band
 @ osc. max. (~0.6GeV)
- Reduce high energy tail which creates BG

On-axis detector (INGRID)

- direct v beam day-by-day monitoring (direction, intensity and profile)
- 16 cubic modules. Sandwich of iron plates and scintillator planes

Off-axis detector (ND280)

- measure v flux/spectrum before oscillations
- 2 Fine Grained Detectors (FGDs)
- 3 Time Projection Chambers (TPCs)
 PID by dE/dx in gas
- POD (π^0 detector), ECAL, SMRD

http://dx.doi.org/10.1016/j.nima.2011.06.067

Far detector : Super-Kamiokande

Observed SK event timing (relative to beam arrival time)

- Water Cherenkov detector, 22.5kton fiducial mass
- Excellent μ /e PID using ring-shape & opening angle (mis-ID probability ~1%)
- 0 T2K: Realtime recording of all PMT hits within $\pm 500 \mu$ sec of beam arrival time by using GPS

Beam data used in the published results

Oscillation analysis

Super-K Measurements :

- v_e appearance
 - \rightarrow counting analysis
- ν_µ disappearance
 → rate & spectrum shape

ND280 Measurements :

- Inclusive v_{μ} CC measurement
- v_e measurement as cross-check

 $\mathbf{D}\mu$, Data

 $\mathbf{p}^{\mu,MC}$

exp

SK

Observation/Expectation comparison to extract oscillation parameters

ND280 / Super-K MC simulations

Neutrino Flux :

Detailed MC simulation of beamline with input from proton beam monitors & external hadron data

Neutrino Interaction :

Model (NEUT) tuned/constrained with external data

 \rightarrow Detector simulations

Normalize SK MC prediction

by ND ν_{μ} CC rate

Neutrino flux prediction

T2K beam simulation based on hadron production measurements

- NA61/SHINE (@CERN) measured hadron production in (p, θ) using 30GeV protons and graphite target
- π outside NA61 acceptance and K
 production modeled with FLUKA

Error source (ν_e analysis)	$R_{ND}^{\mu,\ MC}$	N_{SK}^{MC}	$\frac{N^{MC}_{SK}}{R^{\mu,\ MC}_{ND}}$
Pion production	5.7%	6.2%	2.5%
Kaon production	10.0%	11.1%	7.6%
Nucleon production	5.9%	6.6%	1.4%
Production x-section	7.7%	6.9%	0.7%
Proton beam position/profile	2.2%	0.0%	2.2%
Beam direction measurement	2.7%	2.0%	0.7%
Target alignment	0.3%	0.0%	0.2%
Horn alignment	0.6%	0.5%	0.1%
Horn abs. current	0.5%	0.7%	0.3%
Total	15.4%	16.1%	8.5%

Partial error cancellation after ND correction

ND280 measurements

Data consistent with MC based on NA61 data and v interaction simulation $_{11}$

T2K $\nu_{\rm e}$ event selection

Number of remaining events after each cut

0

0

300

1000

Reconstructed v energy (MeV)

2000

3000

0

0

100

Invariant mass (MeV/c²)

200

- Beam timing, FC, fiducial (88)
- Single-ring electron-like (8)
- Visible energy > 100MeV (7)
- No delayed electron signal (6)
- Invariant mass < 105MeV/c² (6)
- Rec. v energy < 1250MeV (6)</p>

→ 6 events observed

Expected number of v_e events (θ_{13} =0)

Expected number of events for $\theta_{13}=0$: **1.5 ± 0.3 (sys.) events**

ν_e appearance search result with 1.43x10²⁰ p.o.t. data

Prob. of observing ≥ 6 events if $\theta_{13}=0 \rightarrow 0.7\%$ (2.5 σ) First indication of v_{e} appearance via non-zero θ_{13}

(Feldman-Cousins method used to produce the confidence intervals) Normal hierarchy, $\delta=0$: $\sin^2 2\theta_{13} = 0.11$ (best fit), 0.03-0.28 (90% C.L.) Inverted hierarchy, $\delta=0$: $\sin^2 2\theta_{13} = 0.14$ (best fit), 0.04-0.34 (90% C.L.)

Published in Phys. Rev. Lett. 107, 041801 (2011)

Recovery after the EQ and commissioning

- Primary beamline (proton beam)
 - Equipment \rightarrow No fatal damages due to the EQ
 - Re-aligned all the super-conducting magnets
 - → Became ready before December
- Secondary beamline (the target and downstream)
 - Equipment \rightarrow No fatal damages due to the EQ
 - \rightarrow Became ready in mid-December after a careful inspection
- During the commissioning
 - The magnetic horn power-supply broke in late-December
 - → Decided to re-use an old horn power-supply
 - Resumed physics runs in early-March with 250kA horn current
 - \rightarrow A device in the horn PS broke and was replaced with a spare
 - → Resumed the experiment with 200kA horn current for safety

The Daya Bay result, and then ...

Our aim does not change.

- Discover v_e appearance first (>3 σ).
- **o** Then measure v_e appearance probability precisely

T2K current status and plan

O Physics data-taking started on March 8th

- 2.92 sec repetition cycle (3.02 sec before the EQ)
- 150kW beam power (145kW max. before the EQ)
- 200kA horn current (250kA before the EQ)

By this summer, T2K will

- Double the statistics
 - Improve the analysis

Exclude "no v_e appearance" hypothesis with >3 σ

Analysis improvement is going on

o Neutrino flux model

Based additionally on the experimental data of K production (by NA61@CERN using the same proton beam energy and target as T2K)

o Neutrino interaction model

- Using recent experimental data (MiniBooNE, K2K, ...)
- Near detector data analysis
 - v_{μ} CC inclusive # of events \rightarrow Distribution of CCQE/CCnonQE samples
- o SK detector systematic error
 - Improved error estimation for sub-dominant components
- \circ v_e appearance analysis using the shape information
 - Reconstructed v energy, electron momentum vs. direction, ...

An example of sensitivity study (MC)

±1σ region of sin² 2θ₁₃ Run1+2 p.o.t. 0.04-0.18 x2 p.o.t. 0.06-0.15

Significance @ θ_{13} =0

- Run1+2 # events 2.2σ
 - x2 # events 3.0σ
 - x2 +Spectrum 3.2σ

Summary

- 0 v_e appearance result from the first off-axis long-baseline v experiment using 1.43x10²⁰ p.o.t. data
- Indication of v_e appearance via non-zero θ_{13}
 - 6 candidate events observed, while 1.5±0.3 expected if θ_{13} =0 → probability = 0.7 % (2.5 σ significance)

Phys. Rev. Lett. 107, 041801 (2011)

- Physics data-taking was resumed in early-March
 - would like to double the statistics and discover the v_e appearance with >3 σ by this summer
 - → Toward a precise measurement of v_e appearance probability

Supplement