IceCubeによる超高エネルギー 宇宙ニュートリノ探索 Status and Future Prospects

Aya Ishihara for the IceCube collaboration JSPS Research Fellow at Chiba University

第24回宇宙ニュートリノ研究会

Outline

- IceCubeにおける超高エネルギーニュートリノ探索
- ・ 超高エネルギーニュートリノ探索解析手法の現状
 と結果
- 現在、進められている最新データ解析に向けた 新しい手法の開発・今後の展開

 Constraints on the Extremely-high Energy Cosmic Neutrino Flux with the IceCube 2008-2009 Data
 R. Abbasi, ²⁸ Y. Abdou, ²² T. Abu-Zayyad, ³³ J. Adams, ¹⁶ J. A. Aguilar, ³⁸ M. Ahlers, ³⁰ K. Bearer, ³
 J. Auffenberg, ³⁶ X. Bai, ³¹ M. Baker, ²⁸ S. W. Barwick, ⁴⁴ H. Beay, ⁷ J. L. Bazo Alba, ³⁰ K. Benzer, ³⁰
 J. J. Beatty, ¹⁸, ¹⁹ S. Bechet, ¹³ J. K. Becker, ¹⁰ K.-H. Becker, ³⁸ M. I. Benaberer, ³⁰ G. Benzer, ³⁰
 J. Berdy, ³⁰ P. Berzel, ³⁸ D. Becker, ¹⁰ K.-H. Becker, ³⁸ M. I. Benaberer, ³⁰ G. Benzer, ³⁰
 Berdermann, ³⁰ P. Berzel, ³⁸ B. D. Berker, ¹⁰ K.-H. Becker, ³⁸ M. J. Bonz, ⁴¹ S. Böser, ¹¹ O. Bottmer, ³⁰
 Berdermann, ³⁰ P. Berzel, ³⁸ B. D. Berker, ¹⁰ K.-H. Bersen, ³⁰ C. Bohn, ³⁰ D. Bose, ⁴¹ S. Böser, ¹⁰ O. Bottmer, ³⁰
 Berdermann, ³⁰ P. Berzel, ³⁸ B. D. Berker, ¹⁰ K.-H. Bersen, ³⁰ C. Bohn, ³⁰ D. Bose, ⁴¹ S. Böser, ¹⁰ O. Bottmer, ³⁰
 Berdermann, ³⁰ P. Berzel, ³⁸ B. D. Berker, ³⁶ D. Hardin, ³⁰ D. Bose, ⁴¹ S. Böser, ¹⁰ O. Bottmer, ³⁰
 Bissok, ¹ E. Blaufuss, ⁷ J. Hum, ³⁰ M. Carson, ³⁰ D. Chrikin, ³⁸ B. Christyr, ⁷¹ J. Clem, ³¹ F. Clevernan, ³⁰
 Cohen, ³⁵ C. Cohnard, ³² D. F. Cowen, ³⁶, ³³ M. V. D'Agostino, ⁷ M. Danninger, ³⁴ J. Daughnetee, ⁶ J. C. Daiz, ¹⁰ Bardin, ³⁴ M. Carson, ³¹ J. Dreyer, ¹⁰ J. P. Densei, ³⁴ J. Carson, ³⁴ J. Carson, ³⁵ J. Dreyer, ³⁴ J. P. Bostati, ³⁵ G. de Vires-Uterwerg, ³⁴
 Cohen, ³⁵ C. Cohnard, ³⁵ T. Denger, ¹¹ O. Depaepe, ¹⁴ F. Descamps, ²² P. Desiati, ³⁵ G. de Vires-Uterwerg, ³⁴ J. Devyer, ³⁵ J. J. Dreyer, ¹⁰ J. P. Dumm, ³⁶ R. Ehrlineh, ⁴⁷ J. Eischer, ³⁶ S. D. Bereksen, ³⁶ O. Forder, ³⁶ A. Franckowiak, ¹⁶ J. ³⁵ C. Chiney, ³⁴ T. Fischer-Wasels, ³⁵ M. M. Foerster, ³⁶ B. M. Foer, ³⁶ A. Franckowiak, ³⁶ J. ³⁵ J. C. Billawer, ³⁴ T. Fischer-Wasels, ³⁵

IceCube at South Pole

Astronomical Neutrino Sources

high energy cosmic-ray sources, e.g. AGN, GRB...

sync

sync

The sources of the highest energy neutrinos

EHE cosmic-ray and CMB induced neutrinos

モデルエネルギー領域

IceCube Event Gallery

Cherenkov light illuminations from particles

Energy threshold ~10 GeV >10⁸ muons/day >200 neutrinos/day With 40 strings, 2008 Dec

With 40 strings, 2009 May

Directions in IceCube: particle screening and the energy upper bound

- Neutrinos identified as "through the Earth" up-going events but only upto < PeV
- EHE neutrino-induced events are coming from above and near horizontal direction

EHE neutrino mean free path $I_n \sim 100 \text{ km} << R_{Earth}$ $s^{cc}{}_{nN} \sim 10^{-6 \sim -4} \text{ mb}$

IceCube事象分類

- 事象の方向
 - Upward-going neutrinos
 - Conventional atmospheric neutrino background
 - Prompt neutrinos + astrophysical neutrinos
 - Directional reconstruction is important initiated by only neutrino induced muon sensitive analysis
- 事象のエネルギー
 - All direction
 - High energy
 - All Flavor
- 事象のトポロジー
 - All direction
 - Flavor sensitive

Extremly-high Energy Neutrino Signal

Analysis Flow for 2008-2009 data with the half IceCube

- Level-0 Online filter data reduction
- Level-1 appropriate sets of MCs/Data samples
 - MCs are high energy optimized
- Level-2 Quality cut
 - Less systematics
 - Detailed MC/Data comparisons
- Level-3 Final selection

Level-1: Samples

Total livetime 370days

promising GZK neutrinos = high NPE horizontal events

Level-2 Quality cut

promising GZK neutrinos = high NPE horizontal events

Pulse timing indicates the signal-like-ness

Data and Mcs at Level-2

Level-3 Final Selection

promising GZK neutrinos = high NPE horizontal events

Summary of analysis

Level-0	Online filtering level – log NPE > 2.8
Level-1	Coincidence pulse cleaning,
	MC applicability: Nch > 200 && log NPE > 3.5
Level-2	Horizontally mis-reco event cleaning for shallow and timing distributions for deep events
Level-3	Final Candidate Selection Criteria

Error Budget

Signal (GZK1) ± 0.8 %(stat.) +14.0 -11.6 %(sys.)

Background ± 17.0% (stat.) +60.4 % -96.0%(sys.)

Err. Sources	Signal (GZK model)	Err. Sources	Background
statistical error	± 0.8 %	statistical error	±17.0 %
NPE		Composition	-83.86%
in-situ calib.	+3.89 / -7.22 %	interaction model	+36.1%
in-lab calib. 10.1%)		Coincident event (cos theta>0.2)	+29.4%
neutrino cross section	± 9.0 %	Coincident event (cos theta<0.2)	+10.5%
photo-nuclear	+10.0 %	ice property	+30.2% / - 22.2%
interaction		NPE	
LPM effect	± 1.0 %	measurements	+37.1%/-46.7%

Diffuse neutrinos with extremely-high energies

E⁻² flux upper limit in 10^{6.3} < Energy/GeV < 10^{9.8}

*Yoshida et al The ApJ 479 547-559 (1997), **Kalahsev et al , Phys.Rev.Rev. D 66 063004 (2002), ***Engel et al, Phys. Rev. D, 64(9):093010, 2001, ****Ahlers et al, Astropart. Phys. 34 106-115 (2010) #Yoshida et al, Phys.Rev.Lett. 81 5505 (1998),##Sigl et al , Phys.Rev.Rev. D 59 043504 (1998), ^Razzaque et al(2003)

Near Future Sensitivity

Expected EHE signal event rates

Models	The half IceCube # of events	The full IceCube # of events (3 years)
GZK1 (Yoshida et al) *	0.57	3.1
GZK2 Strong Evol. (Sigl) **	0.91 (C.L 53.4%)	4.9
GZK3 (ESS with W _L =0.0) ***	0.29	1.5
GZK4 (ESS with W _L =0.7) ***	0.47	2.5
GZK5 (Ahlers max) ****	0.89 (C.L 52.8%)	4.8
GZK6 (Ahlers best fit) ****	0.43	2.3
Z-Burst #	1.03 (C.L 55.7%)	5.1
Top Down(SUSY) ##	5.68 (C.L 99.6%)	31.6
Top Down(QCD) ###	1.19 (C.L 66.4%)	6.3
W&B(evol) ^	3.7	24.5
W&B(no evol) ^	1.1	5.5

*Yoshida et al The ApJ 479 547-559 (1997), **Kalahsev et al, Phys.Rev.Rev. D 66 063004 (2002), ***Engel et al, Phys. Rev. D, 64(9):093010, 2001, ****Ahlers et al, Astropart. Phys. 34 106-115 (2010) #Yoshida et al, Phys.Rev.Lett. 81 5505 (1998),##Sigl et al, Phys.Rev.Rev. D 59 043504 (1998), ^Razzaque et al(2003)

Flavor and Angle Dependence

IceCube Sees Wide Energy Range

All-flavor 90% CL limits and model fluxes

Future implementation 1: IceTop SLC Veto

Future implementation2: Bundles, outlying muons & more

Outlook

- 2008-2009データによる、EHE ニュートリノ解析によってIceCube におけるGZKニュートリノ探索のベースラインは確立。(Draftは Final Collaboration review中、来週中にはペーパーSubmitしま す)
- 2009-2010年度データ解析中(ICRC2011)
 - 2008-2010 Combinedデータで現在のリミットの1/2
- 2010-2011年度データ解析にむけた新しいBG vetoの手法の開発中(ICRC2011)
- 2008年4月から2012年5月までのCombinedデータ解析(Full IceCube 3年分相当)でGZKモデルの議論が可能!

lceCube

USA:

Bartol Research Institute, Delaware University of California, Berkeley University of California, Irvine **Pennsylvania State University Clark-Atlanta University Ohio State University Georgia Tech University of Maryland** University of Alabama, Tuscaloosa **University of Wisconsin-Madison University of Wisconsin-River Falls** Lawrence Berkeley National Lab. **University of Kansas** Southern University and A&M **College, Baton Rouge** University of Alaska, Anchorage

The IceCube Collaboration

Sweden: Uppsala Universitet Stockholm Universitet

Oxford University

Switzerland: EPFL

UK:

Germany: DESY-Zeuthen Universität Mainz Universität Dortmund Universität Wuppertal Humboldt Universität MPI Heidelberg RWTH Aachen

Belgium: Université Libre de Bruxelles Vrije Universiteit Brussel Universiteit Gent Université de Mons-Hainaut

Japan: Chiba University

New Zealand: University of Canterbury

33 institutions, ~250 members http://icecube.wisc.edu