T2K実験の現状 2010年2月9日 柴田政宏 (KEK) For the T2K collaboration

Outline

- 1. Introduction
 - Motivation, setup, sensitivity of the T2K experiment
 - Neutrino facility and detectors
- 2. Neutrino facility commissioning
- 3. Prospect of θ_{13} search
- 4. Summary

1. Introduction

Physics motivation

- To understand neutrino mixing
 - Discovery of finite θ_{13} through ν_{e} appearance

- $\theta_{13} \neq 0 \rightarrow CP$ violation measurement in the future

- Could be a hint to understand how matter dominated universe was made
- Precise measurement of $\theta_{_{23}}$ and $\Delta\,{\rm m}^2_{_{23}}\,{\rm through}\,\,\nu_{_{\mu}}$ disappearance

$$-\theta_{23}$$
 is maximal mixing?

$$\begin{pmatrix} v_{e} \\ v_{\mu} \\ v_{\tau} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta_{23} & \sin\theta_{23} \\ 0 & -\sin\theta_{23} & \cos\theta_{23} \end{pmatrix} \begin{pmatrix} \cos\theta_{13} & 0 & \sin\theta_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -\sin\theta_{13}e^{-i\delta} & 0 & \cos\theta_{13} \end{pmatrix} \begin{pmatrix} \cos\theta_{12} & \sin\theta_{12} & 0 \\ -\sin\theta_{12} & \cos\theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} v_{1} \\ v_{2} \\ v_{3} \end{pmatrix}$$

Tokai to Kamioka experiment (T2K)

- Long base line (295 km) neutrino oscillation experiment with
 - high power (MW class) proton beam of J-PARC Main Ring
 - world largest water Cherenkov neutrino detector (Super-Kamiokande)
 - off axis beam to achieve narrow energy band and low background

Collaboration of the T2K experiment

~ 400 members from 12 Countries
 Japan, US, Canada, France, UK,
 Switzerland, Poland, Korea, Russia, Spain,
 Italy, Germany

Setup of the T2K experiment

Neutrino energy reconstruction

- Interaction with nucleon in detector material is utilized.
- Neutrino energy is derived from Charge Current Quasi Elastic scattering (CCQE).

$\nu_{\rm e}$ appearance

- Signal
 - e⁻ from CCQE interaction
- Background
 - Intrinsic $\nu_{_{\rm e}}$ in $\nu_{_{\mu}}$ beam
 - π^{0} misidentification as e⁻ (from NC1 π interaction)

Neutrino facility and Neutrino detectors

J-PARC Facility (KEK/JAEA) South to North

Materials and Life Experimental Facility

Neutrino Beams

(to Kamioka)

3 Ge

MR (Main Ring)

Rapid Cycli

Synchrotron)

Bird's eye photo in January of 2008

Slow Extraction Exp. Facility

Neutrino facility

Proton beam monitors

- Intensity monitor: current transformer (CT)
- Position monitor: electro static monitor (ESM)
- Profile monitor: segmented secondary emission monitor (SSEM) optical transition radiation monitor (OTR)
- Beam loss monitor (BLM): ionization chamber

Muon monitor

- Muon monitor measures direction, profile and intensity of muons produced with neutrinos.
- Muon monitor is an array of ion chambers and Si PIN photodiodes installed downstream of the beam dump.

Near detector (ND280)

Off axis detector

On axis detector

- On axis detector
 - measure direction and intensity of neutrino beam
- Off axis detector
 - measure flux and energy spectrum of neutrino beam
 - measure ν_{e} contamination
 - measure cross section of neutrino-nucleon interaction

On axis detector (INGRID)

- 16 modules cover 10m×10m region.
- Each module consists of 9 iron targets, 11 scintillator planes and veto planes.
- The scintillator plane consists of scintillator, WLS fiber and MPPC.

Off axis detector

• P0D

- High statistics π^{0} measurement
- Tracker (TPC + FGD)
 - Charged particle tracking
 - FGD also measures $\pi^{\,_0}$
- ECAL
 - Measure $\pi^{\,\scriptscriptstyle 0}$ with P0D and FGD
 - Photon veto
- SMRD
 - Measure range of muons
 - Veto from outside

Far detector (Super-Kamiokande)

 50 kt water Cherenkov detector with 13,031 photo-multipliers

(fiducial volume: 22.5 kt)

- New electronics installed in summer of 2008 (SK–IV)
 - Stable and dead time less DAQ
 - Wide charge dynamic range
- DAQ has been stable and detector calibrations have been performed
- SK is ready for T2K physics run

Far detector (Super-Kamiokande)

• 50 kt water Cherenkov detector with 13,031 photo-multipliers

(fiducial volume: 22.5 kt)

- New electronics installed in summer of 2008 (SK–IV)
 - Stable and dead time less DAQ
 - Wide charge dynamic range
- DAQ has been stable and detector calibrations have been performed
- SK is ready for T2K physics run

2. Neutrino facility commissioning

First year of the T2K experiment

- April Commissioning started
 First neutrino production
- May Commissioning
- June~October Summer shutdown Horn2, 3 installed All INGRID modules installed
- November Commissioning resumed First event in INGRID Off axis detector became ready for beam
- December Commissioning
 First event in off axis detector

First beam commissioning 2009.4.23

First beam commissioning 2009.4.23 (first shot)

Proton profile monitor (SSEM)

Muon monitor

First neutrino event in INGRID

First neutrino event in INGRID

First neutrino event in off axis detector

Event number : 491 | Partition : INVALID | Run number : 1539 | Spill : INVALID | SubRun number :0 | Time : Sat 2009-12-19 07:40:13 JST | Trigger : 1

Interaction inside POD, with tracks through all central detectors.

Achievements of commissioning (by the end of 2009)

- Basic functionality of beam monitors was confirmed.
- Near detector observed neutrino events.
- Proton beam orbit was tuned within 2mm. No significant beam loss was observed.
- Integrated proton number: 3.9×10¹⁶ (20 days operation)
- Max. power: 20kW (continuous), 50kW (one shot operation)
- Beam stability was checked through 30 min. continuous operation.
 (intensity < 1%, position @ most downstream < 0.2mm, direction @ mumon < 1mrad, beam width @ target < 9%)
- Focusing effect of the electromagnetic horns was confirmed.

Orbit tuning of proton beamline

• No significant beam loss was observed.

Integrated proton number & max. intensity

- Integrated proton number: 3.92±0.04×10¹⁶
- Max. intensity: 20kW (continuous), 50kW (single shot)

31

Focusing effect of horn

3. Prospect of θ_{13} search

- Aiming to search θ_{13} with better sensitivity than CHOOZ using data of 2010 physics run with 100kW × 10⁷ s operation.
- The goal is to discover θ_{13} with 3.75MW × 10⁷ s physics run. (3.75MW × 10⁷ s = 8×10²¹ POT@30GeV)

4. Summary

- T2K is an accelerator based long base line neutrino oscillation experiment aiming to conclude neutrino mixing.
 - Discovery of ν appearance
 - Precise measurement of $\,
 u_{\,\, \, \prime \prime} \,$ disappearance
- Neutrino facility started operation from April 2009.
 - Functionality of the facility was confirmed.
 - Neutrino events were observed in the near detector.
- Preparation for physics run is progressing.
- We aim to start data taking from March of 2010 and search $\,\theta_{_{13}}\,$ with sensitivity better than CHOOZ in 2010.
- Our goal is discovery of θ_{13} with 3.75MW × 10⁷s physics run.