

阪大・理 小川 泉

2008/06/27

宇宙ニュートリノ研究会

目次

- 1. Introduction
- 2. 現在進行中の実験
 - CUORECINO
 - NEMO-3
- 3. R&D段階の実験
 - COBRA
 - Kiev
 - MAJORANA
 - SNO+

- 4. 建設中の実験
 - CUORE-0
 - EXO-200
 - GERDA
- 5. CANDLES
- 6. まとめ

Introduction

ニュートリノ放出を伴わない二重β崩壊

- 観測されると...
 - ニュートリノはマヨラナ型である

有効マヨラナニュートリノ質量

$$\left[T^{0\nu}_{1/2}(0^+ \to 0^+)\right]^{-1} = G^{0\nu}(E_0, Z) |M_{0\nu}|^2 \langle m_{\nu} \rangle^2$$

- レプトン数保存則の破れ - レプトジェネシス

Sensitivity:当面の目標 IH

Regions Allowed by Neutrino Oscillation Data

Double beta decay isotopes

isotope	Q (keV)	ab.(%)									
46Ca	990.4	0.004	98Mo	112	24.13	130Te	2529	34.08	170Er	654	14.93
48Ca	4272	0.187	100Mo	3034	9.36	134Xe	830	10.44	176Yb	1087	12.76
70Zn	1001	0.62	104Ru	1300	18.62	136Xe	2468	8.87	186W	488	28.43
76Ge	2039	7.61	110Pd	2000	11.72	142Ce	1417	11.114	192Os	414	40.78
80Se	134	49.61	114Cd	537	28.73	146Nd	70	17.2	198Pt	1047	7.163
82Se	2995	8.73	116Cd	2805	7.49	148Nd	1929	5.7	204Hg	416	6.87
86Kr	1256	17.3	122Sn	366	4.63	150Nd	3368	5.6	232Th	842	100
94Zr	1144	17.4	124Sn	2287	5.79	154Sm	1251	22.75	238U	1145	99.28
96Zr	3350	2.8	128Te	867	31.74	160Gd	1730	21.86			

Q > 3.3 MeV; $Q_{\beta}(^{214}\text{Bi})=3.27 \text{ MeV}$

V.I. Tretyak and Y.G. Zdesenko 2002

Q > 1.7 MeV 宇宙ニュートリノ研究会

Present Limits for Ov double beta decay

Candidate	Detector		Present	<m> (eV)</m>
nucleus	type	(kg yr)	T _{1/2} ^{0νββ} (yr)	
48 Ca			>1.4*10 ²² (90%CL)	
⁷⁶ Ge	Ge diode	~47.7	>1.9*10 ²⁵ (90%CL)	<0.35*
⁸² Se			>1*10 ²³ (90%CL)	
¹⁰⁰ Mo			>4.6*10 ²³ (90%CL)	
¹¹⁶ Cd			>1.7*10 ²³ (90%CL)	
¹²⁸ Te	TeO ₂ cryo		>1.1*10 ²³ (90%CL)	
¹³⁰ Te	TeO2 cryo	~12	>3*10 ²⁴ (90%CL)	<0.19 - 0.68
¹³⁶ Xe	Xe scint	~4.5	>1.2*10 ²⁴ (90%CL)	<1.1 - 2.9
¹⁵⁰ Nd			>1.2*10 ²¹ (90%CL)	
¹⁶⁰ Gd			>1.3*10 ²¹ (90%CL)	

* But also claim of signal by part of same group (see Cattadori's talk)

2008/06/27

Heidelberg-Moscow experiment @ LNGS: claim of evidence of $0\nu\beta\beta$ of ⁷⁶Ge (2004)

MT = 10.9 kg (86% ⁷⁶Ge) x 13 yr x 0.8% = 72 kg yr

b = 0.11 cts/(kg keV yr) before PSA

Resolution $\Delta E = 3.27$ keV

Claimed evidence of $0\nu\beta\beta$ @ 4.2 σ

 $T_{1/2} = 1.2 \text{ x} 10^{25} \text{ y}$

Corresponding to

 M_{ee} = 440 meV with KK ME Signal found at $Q_{\beta\beta}^{exp} = 2038.70 \pm 0.44$ keV $Q_{\beta\beta}^{fheo} = 2039.06 \pm 0.05$ keV

Nu2008 - Christchurch (NZ)

検出器タイプ

• 線源と検出器が一体

- 半導体検出器(イオン化電子空孔対)
- ボロメーター
 - エネルギーを温度上昇で測定

高効率、高エネルギー分解能

- 線源と検出器が別
 - 軌跡検出器
 - エネルギーを軌跡検出器で測定

2008/06/27

宇宙ニュートリノ研究会

Experimental projects

Project	Target	Detector type	Status
CANDLES	⁴⁸ Ca	Scintillator	Constructing (III地下)
COBRA	¹¹⁶ Cd	Semiconductor	R&D
CUORE	¹³⁰ Te	Bolometer	CUORICINOrunning CUORE-0constructing
DCBA	¹⁵⁰ Nd	Tracking	R&D
EXO	¹³⁶ Xe	Liq. Xe TPC 他	EXO-200constructing
GERDA	⁷⁶ Ge	Semiconductor	Phase-I constructing
MAJORANA	⁷⁶ Ge	Semiconductor	R&D
Kiev	¹⁰⁰ Mo, ¹¹⁶ Cd,	Scintillator	R&D
MOON	¹⁰⁰ Mo	Tracking	R&D
NEMO	⁸² Se, ¹⁰⁰ Mo,	Tracking	NEMO-3…running Super-NEMO… R&D
SNO+	¹⁵⁰ Nd	Liquid scintillator	R&D
XMASS	¹³⁶ Xe	Gas scintillator	R&D
2008/06/27	<u>.</u>	宇宙ニュートリノ研究会	10

現在稼働中の実験

CUORICINONEMO-3

CUORICINO: the present

Bolometers as True Calorimeters

CUORICINO: an update

Anticoincidence background spectrum: the bb-0n region

Total statistic ~ 15.53 kg (¹³⁰Te) × y data analyzed up to August 2007

 $b = 0.18 \pm 0.01 \text{ c/keV/kg/y}$

Maximum Likelihood flat background + fit of 2505 peak

$$au_{1/2}^{0
u} \ge 3.1 \cdot 10^{24} \ y \ (90\% \ CL)$$

$$\Rightarrow \langle m_{\nu} \rangle \leq 200 - 680 \ meV^*$$

* Dependent on the value for the nuclear matrix elements 宇宙ニュートリノ研究会

Fréjus Underground Laboratory : 4800 m.w.e.

<u>Source</u>: 10 kg of ββ isotopes cylindrical, S = 20 m², d ~ 60 mg/cm²

Tracking detector:

drift wire chamber operating in Geiger mode (6180 cells) Gas: He + 4% ethyl alcohol + 1% Ar + 0.1% H₂O

<u>Calorimeter</u>: 1940 plastic scintillators coupled to low radioactivity PMTs

Magnetic field: 25 Gauss Gamma shield: Pure Iron (d = 18 cm) Neutron shield: 30 cm water (ext. wall) 40 cm wood (top and bottom) (since march 2004: water + boron)

宇宙ニュートリノ研究会

ββ decay isotopes in NEMO-3 detector

New result: ⁴⁸Ca ββ

T_{1/2} (0νββ) >1.3 x10²² y (90% C.L) → <m_v> < 29.6 eV (90%CL), Eff. 22% Refs: E Caurrier et al., Phys. Rev. Lett. 100 (2008) 052503 (NME)

New result: 96 Zr $2\nu\beta\beta$

Preliminary result: ⁹⁶Zr: $T_{1/2} (2\nu\beta\beta) = [2.3 \pm 0.2(stat) \pm 0.3(syst)] \times 10^{19} y$ $T_{1/2} (0\nu\beta\beta) = 8.6 \times 10^{21} y (90\% \text{ C.L}) \longrightarrow \langle m_{\nu} \rangle \langle 7.4 - 20.1 \text{ eV} (90\% \text{ CL}), \text{ Eff. 19\%}$ Refs for NME : Simkovic, et al., Phys. Rev. C 77 (2008) 045503 Kortelainen and Suhonen, Phys. Rev. C 76 (2007) 024315

Recent result: ¹⁵⁰Nd 2νββ (Moriond)

 Preliminary results: $T_{1/2} (2v\beta\beta) = [9.20^{+0.25}_{-0.22} (stat) \pm 0.62 (syst)] \times 10^{18} y$

 Expected $T_{1/2} (0v\beta\beta) = 1.45 \times 10^{22} y$

 Observed $T_{1/2} (0v\beta\beta) = 1.8 \times 10^{22} y$ (90% C.L.) Eff. 19%

 $<m_v> < 1.7 - 2.4 \text{ eV} (90\% \text{CL}), QRPA (2007, corrected paper compared to 2006)$

 deformation not taken into account

 <m> < 4.8-7.6 eV: pseudo-SU(3) Hirsh (95) deformation taken into account

 Ref for NME : V. Rodin et al., Nucl. Phys. A 793 (2007) 213.

 J.H. Hirsch et al., Nucl. Phys. A 582 (1995) 124.

2008/06/27

R&D段階の実験

- COBRA
- Kiev
- MAJORANA
- SNO+

COBRA

http://cobra.physik.uni-dortmund.de

Slides courtesy of Kay Zuber.

Location

Use large amount of CdZnTe Semiconductor Detectors

Large array of CdZnTe detectors

2008/06/27 Christchurch (NZ)

宇宙ニューキリノ研究会

C. Cattadori

The first layer(16 detectors, 1 cm³, 6.4 g each) of CdZnTe array: full array 64 detectors

Readout: Energy

Started installation at LNGS in april 2006, world wide largest array (this type of detector

Kiev group

- Experiments developed and/or considered in the past with different scintillating crystals with different isotopes
 - e.g. CAMEO, CARVEL, etc.
 - possible deployment of crystals in large, existing detectors (e.g. Borexino, SNO)
- Currently the following scintillating crystals (and experiments) are being developed
 - $\begin{array}{cccc} & {}^{116}\text{CdWO}_4 & {}^{116}\text{Cd}, & Q\text{-value} = 2.80 \text{ MeV} \\ & \text{also} & {}^{106}\text{Cd} \ \beta^+\beta^+\text{decay}, & Q\text{-value} = 2.77 \text{ MeV} \\ & \text{CaMO}_4 & {}^{100}\text{Mo}, & Q\text{-value} = 3.03 \text{ MeV} \\ & ZnWO_4 & {}^{64}\text{Zn}, & Q\text{-value} = 1.10 \text{ MeV} \end{array}$

CaMoO₄ crystal scintillators 2β decay of ¹⁰⁰Mo

宇宙ニュートリノ研究会

CaMoO₄ radiopurity

ICMSAI, Moscow, Russia

NIMA 584 (2008) 334

Source	Activity (mBq/kg)				
	CARAT				
²³² Th	< 0.7	< 1.5			
²²⁸ Th	0.2-0.4	0.04			
²³⁸ U	< 0.5	< 1.5			
²²⁶ Ra	2.1-2.5	0.13			
²¹⁰ Pb	< 400	< 17			
²¹⁰ Po	400-500	< 8			
⁴⁰ K	< 1 - <3	< 3			
⁹⁰ Sr	<60 - <180	< 23			

measured in the Solotvina Underground Lab

2008/06/27

宇宙ニュートリノ研究会

MAJORANA ⁷⁶Ge $0\nu\beta\beta$ -decay

The MAJORANA Demonstrator Module

Detectors are deployed in string and operated in an ultra-clean, electroformed Cu cryostat

- 60-kg of Ge detectors
 - 30-kg of 86% enriched ⁷⁶Ge crystals required for science goal; 30-kg non enriched
 - Examine detector technology options
 p- and n-type, segmentation, point-contact.
- Low-background Cryostats & Shield
 - ultra-clean, electroformed Cu
 - naturally scalable
 - Compact low-background passive Cu and Pb shield with active muon veto
- Located underground 4850' level at SUSEL/DUSEL
- Background Goal in the $0\nu\beta\beta$ peak region of interest (4 keV at 2039 keV)
 - ~ 1 count/ROI/t-y (after analysis cuts)

Present Status

- Approved & Supported: As a R&D Project by DOE NP & NSF PNA
- Progress towards Demonstrator Module
 - UG clean room laboratory space should be available early 2009 at Sanford Laboratory (Homestake gold mine, Lead, SD).
 - UG Electroforming facility will be initial focus due to required time to prepare Cu parts of shield.
 - Early prototype cryostat with point-contact detectors will soon follow.
 - Working with industrial partner to develop Ge refinement process that could be located either near detector fabrication facility or UG.
- SEGA: enriched segmented detector
 - We have completed our initial performance testing of this detector
 - First enriched segmented detector: works well as designed
 - Presently assembling detector into low-background cryostat
 - Plan to move to WIPP for operation in late 2008

Experimental Programs – IV

SNO+ with Nd-loaded liquid scintillator

- ...also called SNO++
- 0.1% Nd in 1000 tons of scintillator
 - with natural Nd corresponds to 56 kg of ¹⁵⁰Nd isotope
- sensitivity below 100 meV with natural Nd
- meters of ultra-low background self-shielding against gammas and neutrons
 - leads to well-defined background model
- □ liquid detector allows for additional *in-situ* purification
 - possibility to enrich neodymium at French AVLIS facility

56 kg of ¹⁵⁰Nd and $< m_v > = 100 \text{ meV}$

- 6.4% FWHM at Q-value
- 3 years livetime
- U, Th at Borexino levels
- 5σ sensitivity
- note: the dominant background is ⁸B solar neutrinos!
- ²¹⁴Bi (from radon) is almost negligible
- ²¹²Po-²⁰⁸TI tag (3 min) might be used to veto ²⁰⁸TI backgrounds; ²¹²Bi-²¹²Po (300 ns) events constrain the amount of ²⁰⁸TI

Status of SNO+

- funded by NSERC for final design/engineering and initial construction 2008-2010
- submission of full capital proposal to CFI in Q4 2008 with decision in Q2 2009
- construction of hold-down net begins in 2009
- construction of scintillator process and purification begins in 2010
- \Box end of 2010 \rightarrow ready for scintillator filling

new collaborators welcome!

建設中の実験

- CUORE-0 @Gran sasso
- EXO-200 @WIPP
- GERDA @Gran sasso

CUORE: The (near) Future

CUORE-0: The Demonstrator

CUORE-0 will be the first CUORE tower to be installed in the dilution refrigerator in hall A of LNGS, presently housing Cuoricino

Motivations of CUORE-0

• Test with high statistics the many improvements done on several technical aspects of the assembly procedure:

- gluing
- holder
- zero-contact approach
- wires

ュートリノ研究会

• ...

• CUORE-0 background should be around 1/3 of Cuoricino background in the DBD energy region and close to the CUORE target in energy degraded alpha region

• CUORE-0 will be a powerful experiment that will overtake soon Cuoricino sensitivity

2008/06/27

Sources of Background @ 2.530 MeV

CUORICINO

- Flat background above 2615 keV
- Natural extrapolation below
- Contribution to the 0_V-DBD region: ~ 70%
- In R&D already decreased by a factor ~ 5

The **GOAL for CUORE** background is: 10⁻² ÷ 10⁻³ c/keV/kg/y

Contribution from intrinsic contaminations ~ 10⁻³ c/keV/kg/y

Contribution from <u>neutrons</u>: ~ 3x10⁻⁴ c/keV/kg/y

Contribution from <u>surface</u> contaminations < 5 x 10⁻² c/keV/kg/y

2008/06/27

Radon: The big enemy

TEST: expone crystals and structure materials to Rn-source

15

CUORE-0 vs Cuoricino

2008/06/27

宇宙ニュートリノ研究会

EXO-200 LXe TPC field cage & readout planes

Central HV plane (photo-etched phosphor bronze)

acrylic supports

flex cables on back of APD plane

EXO low activity copper vessel "hugs" the fiducial volume very closely

 Very light (~1.5mm thin, ~15kg) to minimize materials

•Different parts e-beam welded

- together • Field TIG weld(s) to seal the vessel after assembly (TIG technology tested for radioactivity)
- All machining done under (shallow) shielding

~500 "Bare" LAAPD

Gain set at 100-150

 $\begin{array}{l} V{\sim}1500V\\ \Delta V < \pm 0.5V\\ \Delta T < \pm 1K \quad APD \text{ is the driver}\\ \text{ for temperature stability}\\ \text{Leakage current } OK \text{ cold} \end{array}$

APDs are ideal for our application:

very clean & light-weight,
very sensitive to VUV

- very sensitive to vov

QE > 1 at 175nm

2008/06/27

宇宙ニュートリノ研究会

Phases of GERDA

Phase I:

- Use of existing ⁷⁶Ge-diodes from Heidelberg-Moscow and IGEX-experiments
- 8 detectors for 17.9 Kg of ^{enr}Ge
- Expected Background ~ 10⁻² count/(kg·keV·y) dominated by crystal internal backg. → KKDC evidence verified in an external background-free setup.
- Phase II:
 - Add new diodes (+22 kg, total: ~40 kg ^{enr}Ge) able to discriminate SSE/MSE.
 - Demonstration of bkg-level <10⁻³ count/(kg·keV·y)
- Eventually Phase III:
 - If background OK
 - If KKDC-evidence not confirmed: *O*(1 ton) experiment by a worldwide collaboration with Majorana

2008/06/27

宇宙ニュートリノ研究会

GERDA:Status of Cryostat

Built with low activity steel

1-5 mBq/kg

- Cryostat arrived at LNGS: 6 March 2008
- Rn emanation OK

トリノ研究会

宇宙ニュー

- Mounting of inner Cu shielding plates (thickness 3/6 cm) completed
- LAr evaporation rate tested (< 2% day⁻¹)
- LAr scintillation light readout to reduce external bckg in detectors can be C. Cattadori

2008/06/27

Status of Phase I detectors

- 17.9 kg enriched and 15 kg non-enriched crystals (GENIUS-TF) available
- Reprocessing of all diodes at manufacturer (ongoing)
- Stored underground during reprocessing dead-time (HADES)
- Dedicated low-mass Cu holder constructed for each diode.

Resolutions of former HdM (ANG) and IGEX (RG) detectors measured in original cryostats after delivery and maintenance to LNGS

		ANG1	ANG2	ANG3	ANG4	ANG5	RG1	RG2	RG3	
	FWHM [keV]	2.54	2.29	2.93	2.47	2.59	2.21	2.31	2.26])
Ν	Mass [kg]	0.980	2.906	2.446	2.400	2.781	2.150	2.194	2.121	uto Nar Isioa Nu

宇宙ニュートリノ研究会

- Water Tank & PMTs for μ-veto water Cerenkov May-June 2008.
- Technical Building & Superstructure: Summer 2008
- Lock & Clean Room: 2008-2009
- Commisioning: ~ first semester 2009

In parallel:

 Complete Reprocessing of all Phase I crystals, assemble 3-fold strings, integrate cold FE with detector string, etc.....

Candles

Why ⁴⁸Ca ?

- Largest Q value (4.27 MeV)
 - next largest; ¹⁵⁰Nd (3.3 MeV)
 - large phase space factor
 - almost background free
 (γ: 2.6 MeV, β: 3.3 MeV)
- Low Natural abundance \rightarrow 0.187%
 - large detector
 - Enrichment

Concepts of CANDLES

- undoped CaF₂ (CaF₂(pure))
 - ⁴⁸Ca ($Q_{\beta\beta}$ =4.27 MeV)
 - 300 kg 3 t 100 t
- Liquid Scintillator (LS)
 - 4π active shield
 - Passive shield
 - wavelength shifter for CaF₂
- Photomultiplier
 - large photo-coverage

Radioactive BG inside CaF₂

- Natural Radioactive BGs ~ $Q_{\beta\beta}$
 - Maximum energy
 - $\gamma \sim 2.6$ MeV, $\beta \sim 3.3$ MeV, α (max)~2.7 MeVe.e. (quench; $f_{\alpha} \sim 0.3$)
 - Successive decays of α , β , γ in decay chain
 - ~1 μsec decay time CaF₂

Development of High Purity CaF₂ Crystals

U-chain(²¹⁴Bi) $\sim 36 \mu Bq/kg \dots 1/30$ of Previous Crystals (14±5 $\mu Bq/kg$;Best) Th-chain(²²⁰Rn) $\sim 29 \mu Bq/kg \dots 1/3$ of Previous Crystals (6±1 $\mu Bq/kg$;Best)

2008/06/27

Rejection of Double Pulse

Typical Pulse Shape (500 MHz FADC)

99% of double pulse events will be rejected

Pulse Shape Discrimination

Pulse Shape discrimination

- Shape Indicator (PRC 67(2003) 014310)

CANDLES III at Osaka

Liquid scintillator $^{\phi}1000 \times ^{h}1000$ acrylic container H₂O Buffer : passive shield $^{\phi}2800 \times ^{h}2600$

PMT:15" PMT (× 8) : R2018 → 33.4% photo-13" PMT (× 32) : R8055 ✓ coverage $CaF_2 : 10^3 cm^3 \times 60$ (191 kg)

2008/06/27

宇宙ニュートリノ研究会

CANDLES III地下

宇宙ニュ・

• 神岡新実験室 (実験室D)

Scale-up version of CANDLES-III, "Sanchika" will move on next winter

 $CaF_2: 60(191kg) \implies 96(305kg)$ <*m*,> ~ 0.5 eV

Challenge on enrichment of ⁴⁸Ca

まとめ

- 二重ベータ崩壊実験 - Majorana粒子の証明 ここ数年以内 - *m_v*~100 meVの感度を持つ実験が稼働開始 (CUORE, GERDA, EXO,...) - CANDLES III地下: 神岡にて建設開始 ⁴⁸CaØenrichment
- Inverted hierarchy領域へ向けて