

The current status of the neutrino telescope experiments

K. Mase, Chiba Univ.

anahis

The neutrino astronomy

Want to open the neutrino astronomy

Neutrinos should be there...

The source of cosmic rays will be the neutrino source. -+

$$p\gamma \rightarrow n\pi' \rightarrow \mu \nu_{\mu}$$

Waxman-Bahcall limit

$$E_{\nu}^{2}\Phi_{\nu_{\mu}} = \frac{\varepsilon}{8}\xi_{Z}t_{H}\frac{c}{4\pi}E_{CR}^{2}\frac{dN_{CR}}{dE_{CR}}$$

 ϵ : fraction of energy going to neutrinos

If ϵ =1, WB limit

$$E_{\nu}^{2}\Phi_{\nu_{\mu}} \approx 2 \times 10^{-8} \ GeV \ cm^{-2} s^{-1} sr^{-1}$$

The sensitivity of 1 km³ size detector is lower than WB limit.

But, where?

Where are cosmic rays generated?

 \rightarrow we don't know yet

(We know where electrons are accelerated)

 \rightarrow Neutrinos can tag it.

Note: if there is a photo-pion production, roughly same amount neutrinos and gammas are generated.

Even more if we consider gamma-ray absorption.

The flux (>1TeV) can be 10^{-11} (cm⁻²s⁻¹) and detectable with 1 km³ detector.

(A. Aharonian et al., MNRAS 387,3, 1206-1214, 2008)

□ The detection

2000.00.27 22114 Houtimo commit

@Neutrino 2008

Optical Neutrino Telescopes

...Dumand

Baikal

- deployed in lake Baikal
- Long history
- > 1.4 km depth
- 1980: R&D started \geq
- 1993: NT-36 (36 PMTs with 3 strings)
- > 1998: NT-200 completed (192 OMs (14.6") PMT), 8 strings $\sim 10^5$ m³)
- 2005: NT-200+ (NT-200 + 3 outer strings) completed
- 2006/7: R&D of Gigaton Volume Detector(GVD)
- 2008: a prototype of GVD installed (testing) new PMTs and 250M SPS FADC)

91-100 strings with 12-16 OMs $\Delta \log(E) \sim 0.1, \Delta \theta < 5 \deg$.

NESTOR (Neutrino Extended Submarine

BUOYS

3800m

Anchor

Telescope with Oceanographic Research)

- Tower based detector
- Up- and downward looking PMTs
- 4000 m deep
- Dry connections
- Test floor (reduced size, 12 m) with 12 PMTs deployed and operated in 2003

Neutrino 2008

15" PMT

\rightarrow Going to KM3NeT and NuBE NESTOR (GRB search)

NESTOR TOWER

12 FLOORS

168 PMTs (facing up & down)

32 m diameter 30 m between floors

20.000m²

Effective Area

for E>10TeV Electro-optical cable 30km to shore station

ANTARES (Astronomy with a Neutrino

Telescope and Abyss environmental RESearch)

- deployed in the Mediterranean sea
- > 2.5 km depth
- > 1996-2000: R&D
- > 2001: The deployment started
- > The construction completed (2008/5/30) (12 lines ~ 10^7 m^3)
- > 3x25x12=900 OMs (10" PMT)
- > 300-1100 MHz ARS

technology proven. (although 12% of the detectors had problems, but can be fixed.)

ready for KM3NeT

ANTARES

NEMO (NEutrino Mediterranean Observatory)

- R&D for 1 km³ detector
- deployed in the Mediterranean sea
- > phase1: 2003-2007 @ LNS test site (2 km depth)
- A mini-tower (300 m) deployed Dec. 2006
- (4 floor, 16 OMs, 10" PMT)
- Some problems with the buoy
- > phase2: 2006-2009 @ Capo Passero site (3.5 km depth)
- > A full tower (750 m, 16 floor)
- under construction (plan to be completed at beginning of 2009)

The IceCube experiment

to detect VHE neutrinos from astrophysical sources

- deployed in the Antarctica glacier
- >70 strings
- >4200 photo-multiplier tubes (PMTs)
- Detector volume: ~1km³
- > ATWD 300MHz, effectively 16 bits
- > 3 different gains (x16, x2, x0.25)
- > 10 bits FADC for long duration pulse

Neutrino energy of above 100 GeV is detectable.

40 strings are deployed so far, and taking data as the biggest neutrino detector.

full detector @2009/10

Particle identification

 v_e (cascade) simulation

 $16 \text{ PeV } v_{\tau} \text{ simulation}$

Particle identification possible from the topology

□ KM3NeT

European community is proposing to build 1 km³ volume detector in Mediterranean sea.

Mostly from ANTARES, NESTOR and NEMO.

- Design Study (2006-2009): aims at developing a cost-effective design for the construction of a 1 km³ neutrino telescope
- Preparatory Phase (2008-2010): preparing for the construction by defining the legal, financial ad governance issues as well as the production plans of the telescope components (from E.Migneco@Neutrino2008)

Design goal

Life time 10 years without major maintenance, construction and deployment < 4 years</p>

- Angular resolution 0.1 deg
- Substantially better sensitivity than IceCube

(from E. Migneco@Neutrino2008)

See more the KM3NeT conceptual design report

 $\rightarrow http://www.km3net.org/CDR/CDR-KM3NeT.pdf$

Point source search by IceCube

IC-9

233 v in 137 days

Consistent with atmospheric V No signal

IC-22

~5000 v in 250 days Resolution 1.5 deg. 5 times better sensitivity than IC-9 (Better than AMANDA 5 years!) Soon to open the blinded box Diffuse result is also coming

Scrambled in right ascension

Point source sensitivity

#

Diffuse neutrinos

Even though we can't resolve signals from each source, we can integral signals in all sky and should see some excess.

But, no excess so far

□ WIMP Search

 χ_1^0

Neutralino scatters and loses energy Becomes trapped in gravity well Annihilates to pairs of SM particles SM particles decay producing n

 $\chi_1^0 + \overline{\chi}_1^0 \rightarrow W^+W^ W \rightarrow \mu \nu_\mu$

 $\begin{array}{l} \chi_{1}{}^{0} + \chi_{1}{}^{0} \rightarrow {}^{I+I^{-}}, \, q \overline{q}, \, W^{+}W^{-}, \, Z^{0}Z^{0} \\ \chi_{1}{}^{0} + \chi_{1}{}^{0} \rightarrow {}^{H^{0}}_{1,2} \, H^{0}{}_{3}, \, Z^{0}H^{0}{}_{1,2}, \, W^{+}H^{-}, \, W^{-}H^{+} \end{array}$

IceCube Deep Core

- Extend IceCube sensitivity to neutrinos with energies below a few hundred GeV
 - Replacement for AMANDA
 - Six strings with 60 high-QE PMTs each (HAMAMATSU super bialkali)
 - Use very clear ice at bottom of IceCube
- Already budgeted

SN Neutrino Search

Bursts of low-energy (MeV) neutrinos from core collapse supernovae

 $\overline{\nu}_{e}$ + p \rightarrow n + e⁺

The produced positron is emitted almost isotropically

Detection via rate increase of the dark noise rate

Record noise rate in 500 ms (~6x10⁵ event/bin, stat. err. very small)

No pointing, no energy

AMANDA sees 90% of the galaxy
IceCube will see out to the LMC (Large Magellanic Cloud, ~50 kpc)

SNEWS (SuperNova Early Warning System) is a collaborative effort among Super-K, SNO, LVD, KamLAND, AMANDA, BooNE and gravitational wave experiments

Radio detectors

> 1962: Askaryan predicted coherent radio emission from excess negative charge in an EM shower (~20% due to mainly Compton scattering)

Askaryan effect

- > 2001: confirmed at SLAC
- several experiments to detect EHECRs using Askaryan effect:
 - Parkes 64 m dish
 - RICE
 - GLUE
 - 64m Kalyazin telescope
 - FORTE
 - ANITA

∝ E²

1018

1019

0.01

10-3

10-4

10-5

10-6

10-7

1015

1016

10'7

electromognetic coscode energy (eV) Gorham et al. PRD 2003

ANITA (Antarctic Impulsive Transient Antenna)

detect radio wave from showers using Askaryan effect

- view: 1.5 M km²! (Tokyo-Hakata: 880km)
- sensitive: 0.2-1.2 GHz
- > 2003-4: ANITA-lite (2 hones)
- > 2006-7: full ANITA

35 days, 3.5 orbits, good data: ~10 days

> 2008-9: ANITA 2

x5 event rate (by mainly lowering the threshold)

June 2006, SLAC T486: "Little Antarctica"

Refrocted

40

20 40 60 0 20 40 60

E 600-800 MHz

20

0

60

400-500 MHz

elevation angle θ (degrees), with respect to beamline

In Ice

60

Thanks to P. Chen, C. Hast, SLAC

- SLAC e⁻ showers with composite energy same as **UHE** neutrinos
 - 10⁸⁻⁹ x 28 GeV $= 2.8 \times 10^{19} \text{ eV}$

Coherent radio power consistent with theory

1st direct observation of radio Cherenkov cone

P. Gorham, SSI 2007

200-400 MHz

0 20 40

11 of 26

ANITA geo-location of borehole cal events

Expect ~ $c\Delta\tau/2D$ altitude & azimuth

- $\oplus \Delta \tau \sim 40-60$ ps, D ~ 1 m (horizontal) to 3
- Altitude: 0.21° observed, 0.3° expected
- Multiple baselines improve constraints
- Pulse-phase interferometry works well!

-0.050

0.210

0.124

0.796

¥

de (deg)

db (deg)

17 of 25

Initial unblinded higher-threshold event set

Jiwoo Nam, NTU

"camp" = any man-made installation, active or not • most are inactive, many may be gone in fact • but exposed metals could discharge

P. Gorham, Neutrino 2008

- ~19K events (9.6K Vpol & 10K Hpol) are impulsive & reconstruct to Antarctic ice locations
- Exclude all repeating locations (H,V,H+V)
- Exclude single events within
 ~50km from known sites
- After cluster+camp rejection:
 - 0 V-polarized (no askaryanlike signals→ no neutrinos)

19 of 25

6 H-polarized events left

- Askaryan (eg, neutrino) signals strongly favor vertical polarization
 - Only top quadrant of Cherenkov "clock-face" escapes TIR at surface
 - Fresnel coefficient transmits more Vpol (TM) than Hpol (TE)
- Reflections from above-the-horizon sources tend to strongly favor horizontal polarization
- \oplus R_{TE}/R_{TM} > 3:1 over most of ANITA acceptance
- ↔ → Hpol events cannot be neutrino candidates but could be
 - Air shower radio (geo-synchrotron)
 - Solid-state relays on satellites

ANITA sensitivity

2008.06.27 22nd Neutrino Sermica

AURA (Askaryan Uunder ice Radio Array)

- > 3 DRMs (digital radio module) deployed (2006-7) in ice at IceCube site
- broad dipole antena centered at 400 MHz
- > The R&D is in progress

A signal candidate

Digital radio module

2008.06.27 22nd Neutrino seminar

Acoustic Detectors

A pressure wave is generated instantaneous following a sudden deposition of energy in the medium (neglecting absorption: O(10 km) at 10 kHz)

Acoustic Detectors (cont'd)

Absorption length / km

ice

There are many R&D for the use

- SPATAS (@ IceCube)
- SAUND
- ACORNE
- AMADEUS (@ ANTARES)
- NEMO-OnDE (@ NEMO)
- @Baikal

2008.C

- > measuring the midium property and noise.
- effort to reconstruct events

Depth/ km

Measured event by ACORNE

~100 km³ effective volume at **GZK** energies

Hybrid Detector

~100 strings on 1 km spacing grid

Hybrid IceCube+Radio+Acoustic (IRA)

5

4

З

2

1

_1

-2

-3

-4

y (km)

Ö

٥

0

D

0

٥

IceCube

radio/acoustic

Ö

optical

0

ŏ

o

"Kifune plot" ©Rene Ong 2002

Summary

Very high energy neutrinos should be generated where the cosmic rays are generated.

One neutrino source will open the astronomy.

> A 1 km³ detector can possibly detect it. (reaching the WB limit)

A detector having a larger effective volume is more feasible to detect. The efforts are being made for such detectors.

Who will open it?

