First Result of Borexino Experiment and KamLAND Solar Phase

Sei Yoshida Reserch Center for Neutrino Science, Tohoku Univ. for the KamLAND Collaboration

Solar neutrino physics

Two types of solar neutrino experiments

- Radiochemical experiments (low energy threshold, integrated flux)
- Water experiments (real-time information, higher energy threshold ~ 5 MeV: Only ~10⁻⁴ of total flux)
- Borexino and KamLAND solar phase: 1st real-time experiment at low energies solar neutrino

Solar neutrino spectrum

- Current neutrino date is consistent with MSW/LMA solution, which predicts transition from matter enhanced oscillations at ⁸B energy to vacuum oscillation at low energy.
- The survival probability increases from ~0.33 at high energy to up to ~0.6 at low energy.

Measurement of ⁷Be solar neutrino flux will test the predicted increase in the v_e survival probability.

Neutrino Meeting @ ICRR

Prediction of solar ν flux

Heavy elements abundance

• Strong disagreement with helioseismological measurement

• Nuclear reaction cross sections (by LUNA)

• ${}^{3}\text{He}(\alpha, \gamma){}^{7}\text{Be}, {}^{14}\text{N}(p, \gamma){}^{15}\text{O}$

		Model	$\mathbf{p}\mathbf{p}$	pep	hep	$^{7}\mathrm{Be}$	$^{8}\mathrm{B}$	^{13}N	$^{15}\mathrm{O}$	$^{17}\mathrm{F}$
		BP04(Yale)	5.94	1.40	7.88	4.86	5.79	5.71	5.03	5.91
		BP04(Garching)	5.94	1.41	7.88	4.84	5.74	5.70	4.98	5.87
		BS04	5.94	1.40	7.86	4.88	5.87	5.62	4.90	6.01
		$BS05(^{14}N)$	5.99	1.42	7.91	4.89	5.83	3.11	2.38	5.97
	<u>_GS98</u>	BS05(OP)	5.99	1.42	7.93	4.84	5.69	3.07	2.33	5.84
	AGS05	BS05(AGS,OP)	6.06	1.45	8.25	4.34	4.51	2.01	1.45	3.25
		BS05(AGS,OPAL)	6.05	1.45	8.23	4.38	4.59	2.03	1.47	3.31
					-10%		-38%			
 S₃₄: 2.5% S_{1,14}: 8 The prediction of ⁷Be flux depends both on the solar model and the section of ³He(α, γ)⁷Be reaction. ← test of standard solar model 					S _{1,}	S _{1,14} : 8.4%				
					the ci	ross				

J.N. Bahcall and A.M. Serenelli, Astro. Phys. J. 621, 85 (2005)

Neutrino Meeting @ ICRR

Solar neutrino status

- Borexino succeeded firstly ⁷Be observation.
- KamLAND plans to measure ⁷Be and pep/CNO v (purification work in progress)

Fig. 5. The fit to the ⁷Be region without using α/β statistical subtraction. The fit is done between 560 and 800 keV.

Fig. 6. Spectral fit in the energy region from 270 keV up to 800 keV after α/β statistical subtraction of the ²¹⁰Po peak.

First Result of Borexino

Talk based on

• arXiv:0708.225lv2 [astro-ph]

• talk presented on TAUP2007@sendai

Borexino Detector

• Borexino is located on Gran Sasso Underground Lab. (4000 m water equivalent).

278 tons of LS contained in nylon vessel of 4.25 m radius (PC + PPO) 800 tons of ultra pure buffer (PC \pm

890 tons of ultra-pure buffer (PC +
 ^{Ts} DMP quencher) contained in stainless
 steel sphere of 6.75 m radius

- External nylon vessel against Rn emanated from PMTs and stainless
- 2214 PMTs of 8 inch (1843 with optical concentrater)
- 2100 tons of ultra-pure water contained in a cylindrical dome
- 200 PMTs for detecting cherenkov light emitted by OD water

Observed spectrum in Borexino

- μ are not relavant BG for ⁷Be
- Fiducial cut
 - External background is the dominant background component in NW, except in the ²¹⁰Po peak region
- **spallation cut** (within 2 msec after μ)
- ²¹⁴Bi-Po and Rn daughters removal

Neutrino Meeting @ ICRR

Energy calibration and stability

- Borexino group have not calibrated with inserted sources (yet)
 - Planned for the near future
- So far, energy calibration determined from ¹⁴C end point spectrum
 - Energy stability and resolution monitored with ²¹⁰Po α peak
 - Difficult to obtain a very precise calibration because:
 - ¹⁴C intrinsic spectrum and electron quenching factor poorly known

Position reconstruction

Position reconstruction algorythms (we have 4 codes right now)

- time of flight fit to hit time distribution
- developed with MC, tested and validated in CTF
- cross checked and tuned in Borexino with ²¹⁴Bi-²¹⁴Po events and ¹⁴C events

Fiducial volume cut

²¹⁴Bi-²¹⁴Po

• External background is large at the periphery of the IV

- γ from materials that penetrate the buffer
- They are removed by a fiducial volume cut
 - **R** < 3.276 m (100 t nominal mass)
 - Another volumetric cut, z < 1.8 m, was done to remove some Rn events caused by initial scintillator termal stabilization (87.9 t)

⁷Be signal: fit without α/β subtraction

Strategy: 0

- Fit the shoulder region only •
- Use between ¹⁴C end point and ²¹⁰Po peak to limit ^{SO}Kr concern pep neutrinos fixed at SSM-LMA valu
- Fit components: ٥
 - ⁷Be v
 - ⁸⁵Kr 0
 - CNO+²¹⁰Bi combined
 - very similar in this limited energy region
 - Light yield left free

⁷Be signal: fit α subtraction of ²¹⁰Po peak

- The large ²¹⁰Po background is <u>subtracted</u> in the following way:
 - For each energy bin, a fit to the α/β Gatti variable is done with two gaussians
 - From the fit result, the number of α particles in that bin is determined
 - This number is subtracted
 - The resulting spectrum is fitted in the energy range between 270 and 800 KeV
 - A small ²¹⁰Po residual background is allowed in the fit
 - Results are totally consistent with those obtained without the subtraction

The two analysis yield fully compatible results

Comments on errors

- Statistical:
 - Right now, it includes combined the effect of statistics itself, the lack of knowledge of ⁸⁵Kr content, and the lack of a precise energy calibration
 - These components are left free in the final fit, and contribute to the statistical error
- Systematic:
 - Mostly due to **fiducial volume determination**
 - With **45 days of data taking,** and <u>without an internal source calibration</u>, we estimate an upper limit of 25% for this error
 - Can be much improved even without internal calibration with more statistics and better understanding of the detector response

Conclusions

- Borexino has performed the first real time detection of ⁷Be solar neutrinos
 - A clear ⁷Be neutrino signal is visible after a few cuts

⁷Be v Rate: 47 \pm 7 (stat) \pm 12 (sys) counts/day/100t

- The central value is well in agreement with MSW/LMA.
- Significant improvements are expected shortly
 - Increase of Statistics \leftarrow
 - Energy calibration
 - Off-line ⁸⁵Kr measurement by mass spectroscopy

KamLAND solar phase

KamLAND Detector

KamLAND

Kamiokamine overburden : 2700m.w.e. Muon rate : 0.34Hz

• 1000 tons of Liquid Scintillator

НН	
н-с-с	-с-с-н
Н Н	Н Н

Dodecane (C₁₂H₂₆) : 80%

Pseudocumene : 20% (1,2,4-Trimethyl Benzene)

PPO : 1.5 g / 1 (2,5-Diphenyloxazole)

- Mineral Oil : Buffer against external BG
- I979 PMTs(17" 1325 + 20" 554)
- Photocathod coverage : 34%
- Outer water Cherenkov detector for muon veto

Detector Purification Work in Progress

Neutrino Meeting @ ICRR

2007 November 2nd

Internal Background of KamLAND

Neutrino Meeting @ ICRR

Required Reduction by Purification

	T _{1/2}	Activities (Before purif.)	Purification Goal	Required Reduction
²¹⁰ Pb	22.3 y	40 mBq/m ³	1 μBq/m ³	10 ⁻⁴ ~ 10 ⁻⁵
⁴⁰ K	10 ⁹ y	2•10 ⁻¹⁶ g/g	10 -18 g/g	10-2
238U	10 ⁹ y	3•10 ⁻¹⁸ g/g	10 -18 g/g	ОК
²³² Th	10 ¹⁰ y	5•10 ⁻¹⁷ g/g	10 -16 g/g	OK
⁸⁵ Kr	11 y	400 mBq/m ³	1 μBq/m ³	10 -5 ~ 10 -6
²²² Rn	3.8 d		< 1mBq/m ³	

R&D Study for Distillation

Achievement

Impurity	Reduction
• ²¹⁰ Pb	~7 × 10 ⁻⁵ (for ²¹² Pb)
• ⁴⁰ K	$< 4 \times 10^{-2}$
• ⁸⁵ Kr	$< 1 \times 10^{-5}$ (for ^{nat} Kr)
• ²²² Rn	~ 6 × 10 ⁻⁴

Almost achieved required level

Neutrino Meeting @ ICRR

Expected Spectrum after Purification

New Purification System

Neutrino Meeting @ ICRR

Concept of New Purification System

100000

- Distillation against metals and ions
- N₂ purge against Kr, Ar, and Rn.

Distillation System

- Boiling point a the Sady mill by pre-small tank.
- LAF MELANEL A BELLGARGAR AND ttle (concentrated) 8
 - \Rightarrow send to PPO concentrator (~140°C under 2kPa), NP is evaporated back to NP tower. 0

Dodecane (C12H26) : 80%

Neutrino Meeting @ ICRR

Pseudocumene : 20% PPO :1.5 g/1 (1,2,4-Trimethyl Benzene) (2,5-Diphenyloxazole) 2007 November 2nd 29

N₂ Generator

• 222 Rn ~ 5µBq/m3 (measured at purif. Area)

		<u>F</u>
PC tower	2.00 (Max-min: 0.08%)	62.4 (Max-min: 3.1%)
NP tower	2.00 (Max-min: 0.17%)	96.9 (Max-min: 0.85%)
PPO tower	0.60 (Max-min: 0.48%)	174.8(Max-min: 0.69%)
Purge tower	40.0 (Max-min: 0.00%) (<i>F</i> =30Nm ³ /h)	29.0 ^{+3.2} _{-2.8} (Tower A) 29.5 ^{+2.9} _{-2.5} (Tower B)
	Neutrino Meeting @ ICRR	2007 November 2nd 31

1st Purification Period

• Total <u>1699m³</u> of LS was purified till <u>Aug. 1^{st,} 2007.</u>

- Purified Volume / KamLAND volume = 1.4
- Reactor and geo neutrino observation ware continuing .

Purified LS Volume and Frow rate

Monitoring Quality

Background Reduction

- Reduction factors for ²¹⁰Pb and ⁴⁰K were monitored by KamLAND
 - The data were continuously taken during purification.
- Rn concentration in purified LS (← less than 10 mBq/m³; OK)
 - Delayed coincidence of Bi-Po \rightarrow miniLAND
 - Electrostatic collection method after trapping
- Reduction factor of ⁸⁵Kr
 - Cold trap + RGA

Optical property

- Attenuation length after distillation
- Light output
- LS density
- PPO concentration
 - GC

Status during 1st Purification

- 222 Rn measurement \rightarrow OK (<10mBq/m³)
 - miniLAND
 - Electro static collection method
- Nat.Kr measurement
 - Cold trap + RGA
- Light yield and attenuation length of LS
- ²²²Rn and ⁸⁵Kr are counted with KamLAND

 γ ray source

Neutrino Meeting @ ICRR

Status during the 1st purification

Purified LS

Status during the 1st purification

Status after purification

Status after purification

Status after the 1st purification (cont.)

	²¹⁰ Bi	²¹⁰ Po	⁸⁵ Kr	³⁹ Ar	⁴⁰ K	²³² Th
Before mBq/m ³	34.9 (0.5)	39.5 (0.7)	421.3 (2.2)	108.0 (2.9)	18.4 (0.5)	1.0(0.1) μBq/m ³
After mBq/m ³	2.5 (0.1) 7.1(0.1)	8.8(0.1) 15.1(1.9)	4.5(0.3) 111.3(0.2)	6.4(0.3) 100.7(0.3)	< 3.7 90%CL	1.2(2.3) μBq/m ³
Ratio [%] After/Before	7.2(0.3) 20.3(0.4)	20.3(0.5) 38.2(4.9)	1.07(0.08) 26.4(0.2)	5.9(0.4) 93.2(2.5)	<20%	Need more statistics.
				D 1 C	T T •	

Red figure: Upper region (Z>4m) Blue figure: Lower region (Z<3m)

The activities are still high for ⁷Be and pep/CNO ν, but ²¹⁰Po reduction helps reactor and geo ν measurement a lot because of less ¹³C(α, n) background.

2nd purification campaign

• We stopped our 1st purification activities .

• Blasting in Kamioka mine by next spring

• We are going to upgrade our apparatus .

- To prevent mixing \rightarrow install cooling system
- more careful distillation ; for small ΔT , $\Delta \rho$,

• And we start 2nd purification campaign after blasting.

temperature controller (~ 25° C \rightarrow ~ 10° C)

For pep/CNO neutrino measurement

Energy spectra after ¹¹C rejection

95% of ¹¹C is rejected by neutron tagging

• Expected CNO v+ *pep* v flux error ~ 6% (Stat. error)