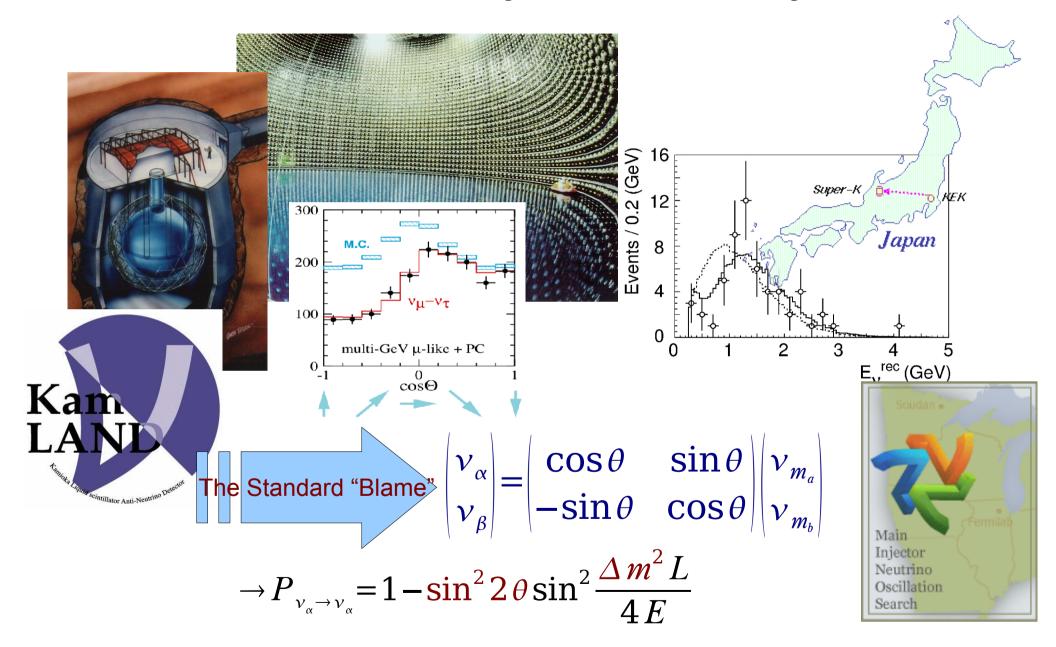
Studies of Neutrino Oscillations with and without Mass using Super-K

Wei Wang, Boston University Neutrino Workshop, Kashiwa, Feb 20, 2007

Preaching Buddhism to Buddha

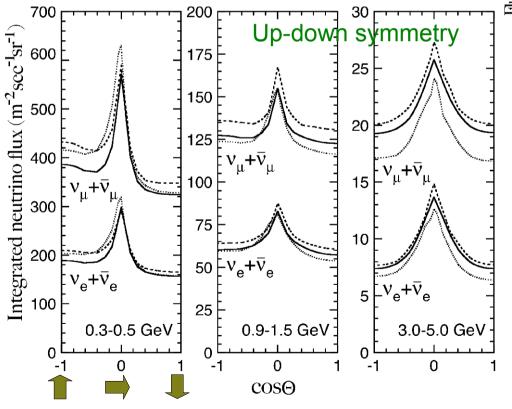


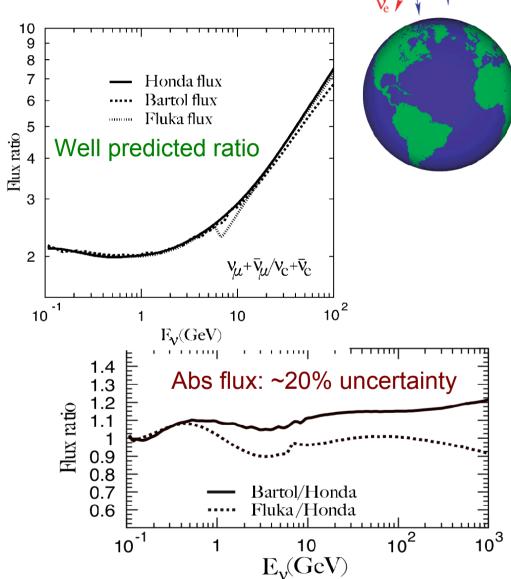
Teaching Grandmasto Suck Eggs

•班門弄斧 Ban-Men Nong-Fu

Syaka ni Seppou

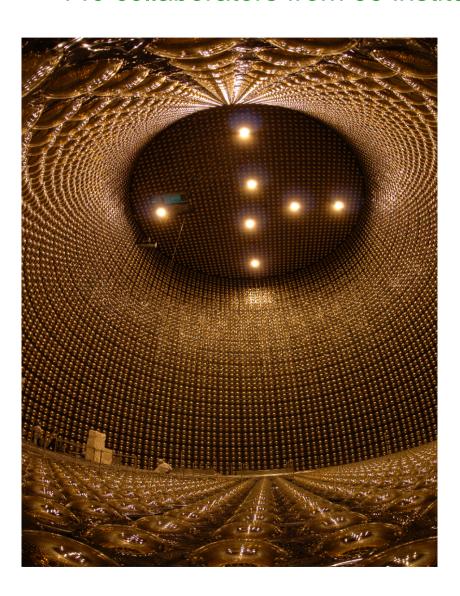
An Era of Discovery in Neutrino Physics




Outline

- Atmospheric neutrinos, Super-K experiment and events
- Standard $\nu_{_{\mu}}\text{-}\nu_{_{\tau}}$ oscillation analysis using zenith distributions
- Sterile neutrino as a alternative to tau neutrino
 - $\rightarrow \nu_{\mu}$ - ν_{τ} mixing vs ν_{μ} - ν_{s} mixing
 - → An admixture analysis
- Neutrino oscillations induced by the violations of Lorentz (LIV) invariance and CPT (CPTV) symmetry
 - → Fit LIV and CPTV induced oscillation against Super-K data
 - → Allowed limits of LIV and CPTV
- Summary and conclusions

Atmospheric Neutrinos

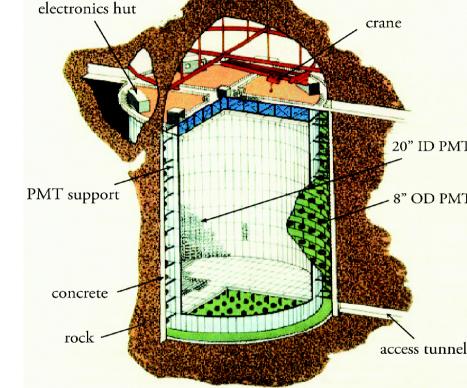

- A large uncertainty on the absolute flux
- Good knowledge on flavor ratio
- Up-down symmetric

Super-Kamiokande Collaboration

140 collaborators from 35 institutes of 5 countries

S. Fukuda, Y. Fukuda, M. Ishitsuka, Y. Itow, T. Kajita, J. Kameda, K. Kaneyuki, K. Kobayashi, Y. Koshio, I M. Miura, S. Morivama, M. Nakahata, S. Nakayama, Y. Obayashi, A. Okada, K. Okumura, N. Sakurai, M. Shiozawa, Y. Suzuki, H. Takeuchi, Y. Takeuchi, T. Toshito, Y. Totsuka, S. Yamada, M. Earl, A. Habig. 2.* E. Kearns.² M. D. Messier.² K. Scholberg.² J. L. Stone.² L. R. Sulak.² C. W. Walter.² M. Goldhaber.³ T. Barszczak.⁴ D. Casper, W. Gajewski, W. R. Kropp, S. Mine, L. R. Price, M. Smy, H. W. Sobel, M. R. Vagins, K. S. Ganezer, S. W. E. Keig, R. W. Ellsworth, S. Tasaka, A. Kibayashi, J. G. Learned, S. Matsuno, D. Takemori, Y. Hayato, T. Ishii, T. Kobayashi, K. Nakamura, Y. Oyama, A. Sakai, M. Sakuda, O. Sasaki, M. Kohama, A. T. Suzuki, D. T. Inagaki, ¹¹ K. Nishikawa, ¹¹ T. J. Haines, ^{12,4} E. Blaufuss, ¹³ B. K. Kim, ¹³ R. Sanford, ¹³ R. Svoboda, ¹³ M. L. Chen, ¹⁴ J. A. Goodman, ¹⁴ G. Guillian, ¹⁴ G. W. Sullivan, ¹⁴ J. Hill, ¹⁵ C. K. Jung, ¹⁵ K. Martens, ¹⁵ M. Malek, ¹⁵ C. Mauger, ¹⁵ C. McGrew, 15 E. Sharkev, 15 B. Viren, 15 C. Yanagisawa, 15 M. Kirisawa, 16 S. Inaba, 16 C. Mitsuda, 16 K. Miyano, 16 H. Okazawa, ¹⁶ C. Saji, ¹⁶ M. Takahashi, ¹⁶ M. Takahata, ¹⁶ Y. Nagashima, ¹⁷ K. Nitta, ¹⁷ M. Takita, ¹⁷ M. Yoshida, ¹⁷ S. B. Kim, ¹⁸ T. Ishizuka, ¹⁹ M. Etoh, ²⁰ Y. Gando, ²⁰ T. Hasegawa, ²⁰ K. Inoue, ²⁰ K. Ishihara, ²⁰ T. Maruyama, ²⁰ J. Shirai.²⁰ A. Suzuki.²⁰ M. Koshiba.²¹ Y. Hatakeyama.²² Y. Ichikawa.²² M. Koike.²² K. Nishiiima.²² H. Fujiyasu.²³ H. Ishino, ²³ M. Morii, ²³ Y. Watanabe, ²³ U. Golebiewska, ²⁴ D. Kielczewska, ^{24,4} S. C. Boyd, ²⁵ A. L. Stachyra, ²⁵ R. J. Wilkes, 25 and K. K. Young 25,†

(Super-Kamiokande Collaboration)


¹Institute for Cosmic Ray Research, University of Tokyo, Kashiwa, Chiba 277-8582, Japan ²Department of Physics, Boston University, Boston, Massachusetts 02215 ³Physics Department, Brookhaven National Laboratory, Upton, New York 11973 ⁴Department of Physics and Astronomy, University of California at Irvine, Irvine, California 92697-4575 ⁵Department of Physics, California State University, Dominguez Hills, Carson, California 90747 ⁶Department of Physics, George Mason University, Fairfax, Virginia 22030 ⁷Department of Physics, Gifu University, Gifu, Gifu 501-1193, Japan ⁸Department of Physics and Astronomy, University of Hawaii, Honolulu, Hawaii 96822 ⁹Institute of Particle and Nuclear Studies, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan

¹⁰Department of Physics, Kobe University, Kobe, Hyogo 657-8501, Japan ¹¹Department of Physics, Kyoto University, Kyoto 606-8502, Japan ¹²Physics Division, P-23, Los Alamos National Laboratory, Los Alamos, New Mexico 87544 ¹³Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803 ¹⁴Department of Physics, University of Maryland, College Park, Maryland 20742 ¹⁵Department of Physics and Astronomy, State University of New York, Stony Brook, New York 11794-3800 ¹⁶Department of Physics, Niigata University, Niigata, Niigata 950-2181, Japan ¹⁷Department of Physics, Osaka University, Toyonaka, Osaka 560-0043, Japan ¹⁸Department of Physics, Seoul National University, Seoul 151-742, Korea ¹⁹Department of Systems Engineering, Shizuoka University, Hamamatsu, Shizuoka 432-8561, Japan ²⁰Research Center for Neutrino Science, Tohoku University, Sendai, Miyagi 980-8578, Japan ²¹The University of Tokyo, Tokyo 113-0033, Japan ²²Department of Physics, Tokai University, Hiratsuka, Kanagawa 259-1292, Japan

²³Department of Physics, Tokyo Institute for Technology, Meguro, Tokyo 152-8551, Japan ²⁴Institute of Experimental Physics, Warsaw University, 00-681 Warsaw, Poland ²⁵Department of Physics, University of Washington, Seattle, Washington 98195-1560

Super-Kamiokande Experiment

- A 50 kt water Cherenkov detector
 - → Inner detector and outer detector optically separated
 - → ID: 25in PMTs; gaps filled by black sheet
 - → OD: 8in PMTs with wavelength shifters, wall covered by reflective Tyvek
- Operating periods
 - → SK-I: 1996 2001
 - 1489 days livetime
 - ~40% ID coverage
 - → SK-II: 2003 2005
 - 804 days livetime
 - Half ID tubes (acrylic&FRP) ~20% coverage
 - → SK-III: since Summer 2006
 - ✓ ID tubes (acrylic&FRP) fully recovered

50 kiloton Water Cherenkov Detector 11,146 ID PMTs + 1,885 OD PMTs

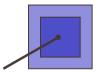
20" ID PMTs

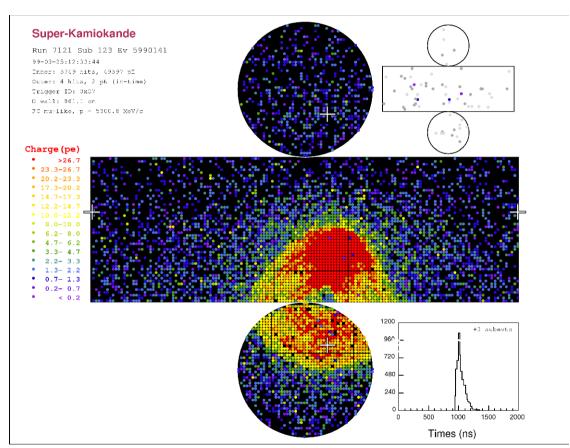
8" OD PMTs

this

analysis

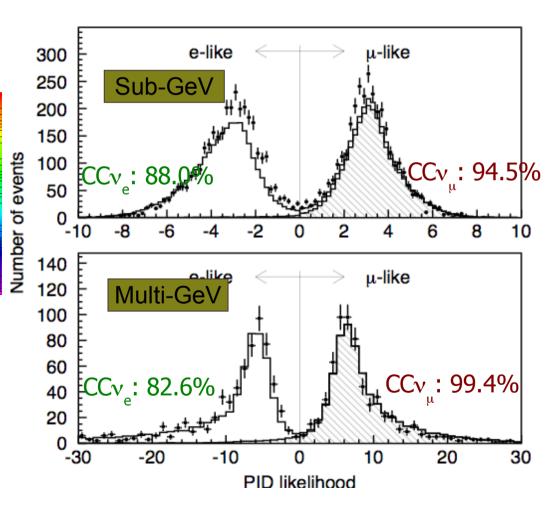
Super-K Neutrino Events


- Neutrino interaction
 - → charged particles
 - → Cherenkov radiation
 - → recorded by PMTs
- Neutrino event categories
 - Fully contained

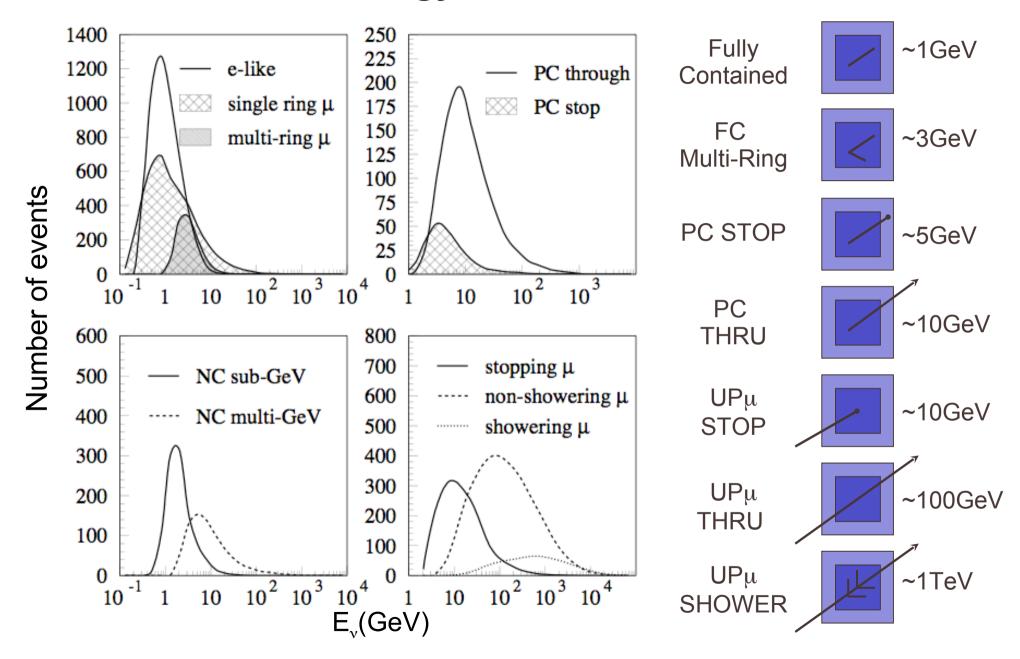


- Partially contained

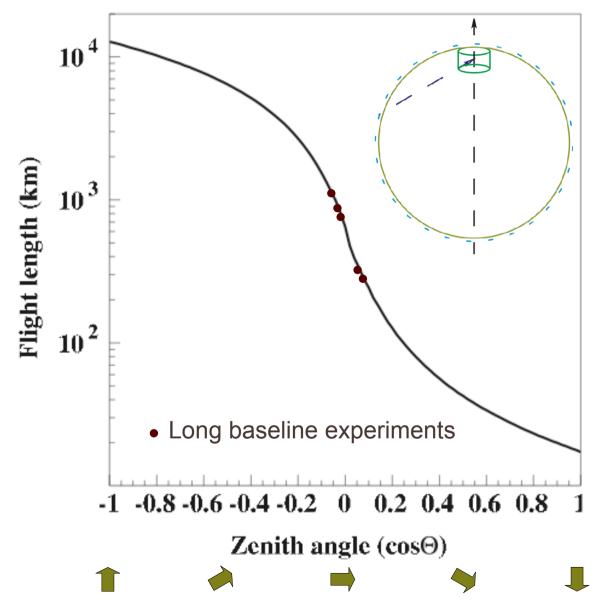
Upward going μ


Event Reconstruction

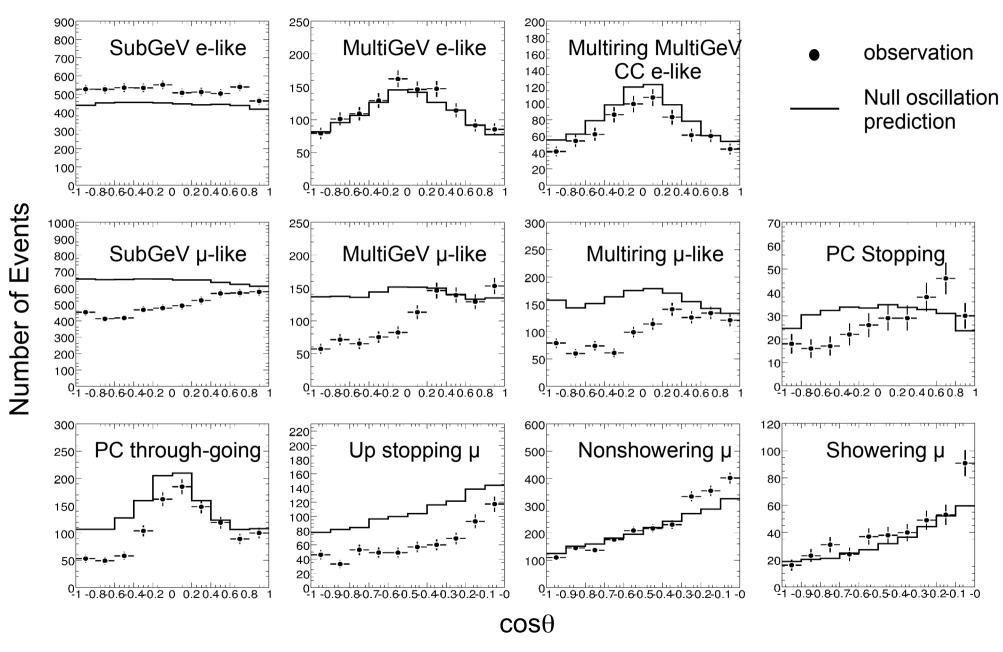
- Vertex finding
- Ring recognition
- PID (e-/μ-like)
- Momentum reconstruction

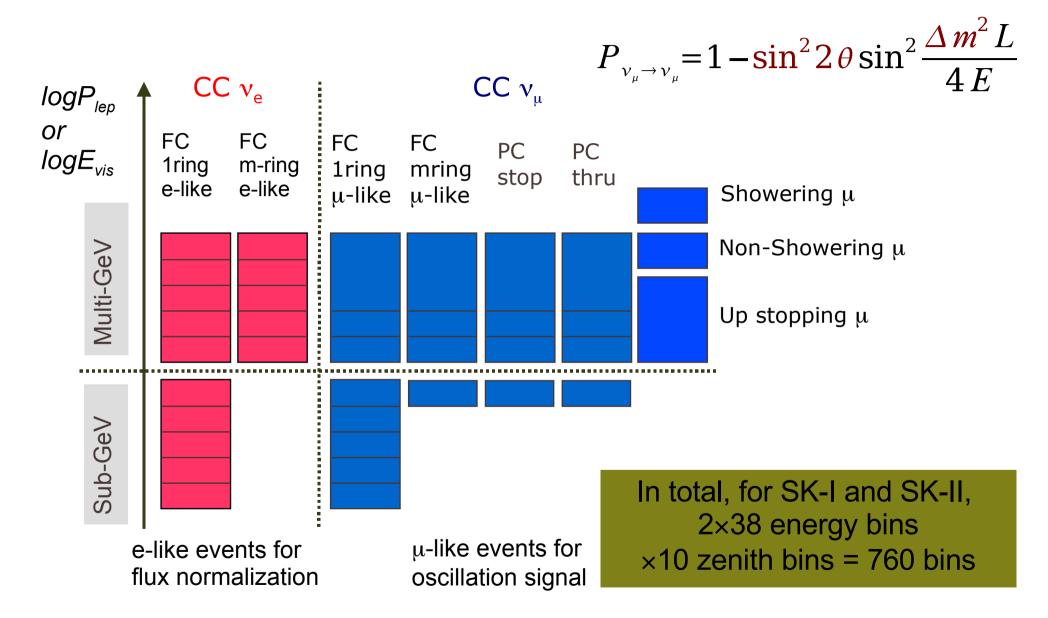

NEUTRINO electron shower

MUON NEUTRINO muon


FC Single Ring Events

Five Decades of Energy


Four Decades of Pathlengths



- →Large ranges of L and E
- → Various matter densities
- ⇒ great advantages for studying exotic phenomena

Atmospheric Neutrino Observations

Data Analysis: Binning

Data Analysis: Pull Method

$$\chi^{2} = \sum_{i=1}^{N} 2(N_{i}^{\text{exp}} - N_{i}^{\text{obs}} - N_{i}^{\text{obs}} \ln \frac{N_{i}^{\text{obs}}}{N_{i}^{\text{exp}}}) + \sum_{j=1}^{M} \left(\frac{\epsilon_{j}}{\sigma_{j}}\right)^{2}$$

Data bins: likelihood ratio

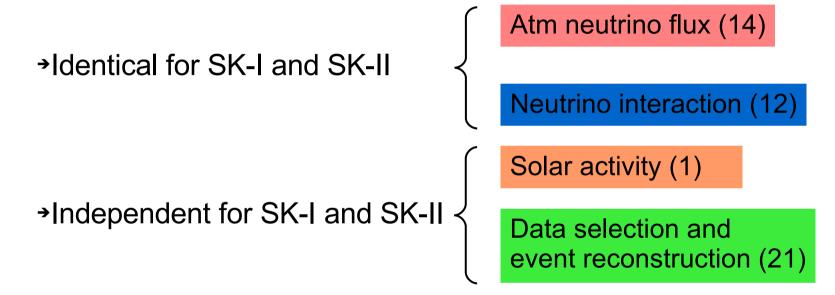
Systematic uncertainties: Gaussian

Predicted events based on ν flux

$$N_i^{\text{exp0}} = P_{\text{survival}}(\text{model x with parameters }\vec{x}) N_i^{\text{nose}}$$

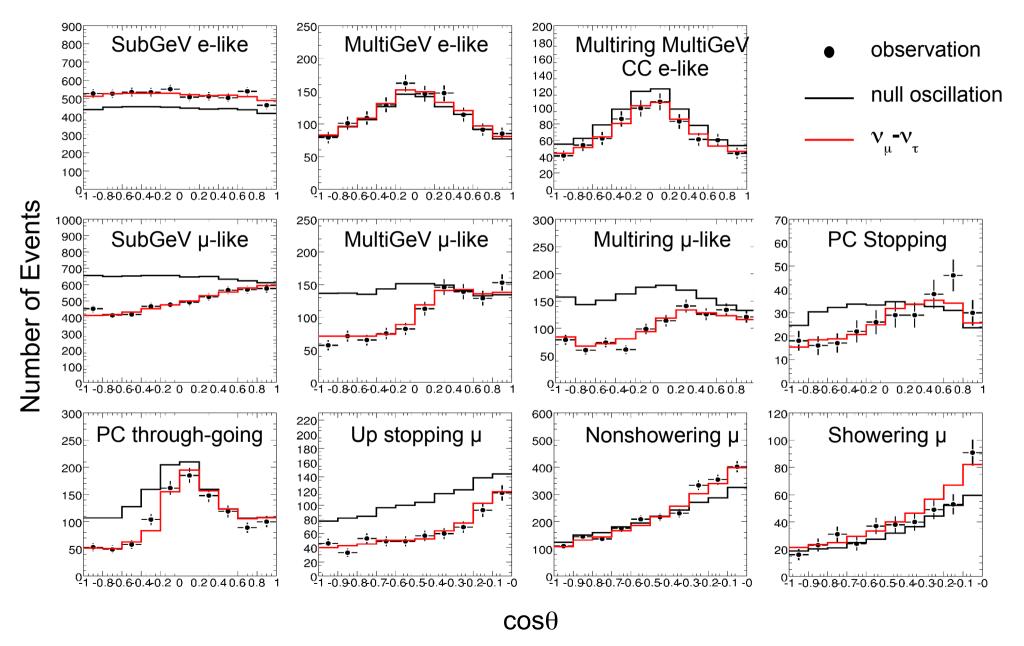
$$N_i^{\exp 0} = P_{\text{survival}} \pmod{\text{model x with parameters } \vec{x}} N_i^{\text{nosc}}$$
 $N_i^{\exp 0} = (1 + \sum_{j=1}^M f_i^j \epsilon_j) N_i^{\exp 0}$

Expected number of events without considering systematics

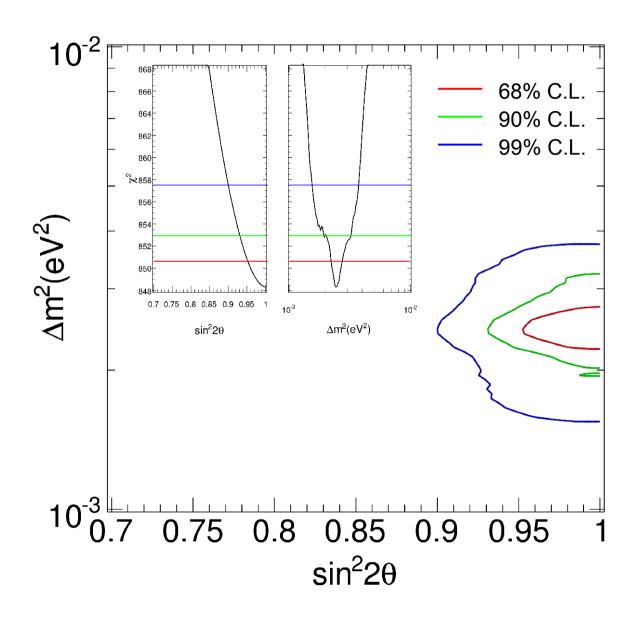

Expected number of events

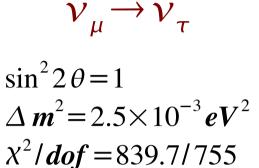
Plug in different models and find the minimum chi-squares

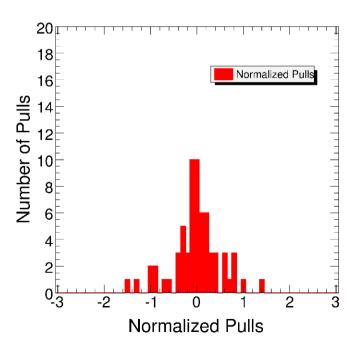
- 1. Minimize wrt systemic terms
 - Solving a linear equation set
- 2. Minimize wrt model parameters
 - searching on a grid in parameter space)


Combining SK-I and SK-II

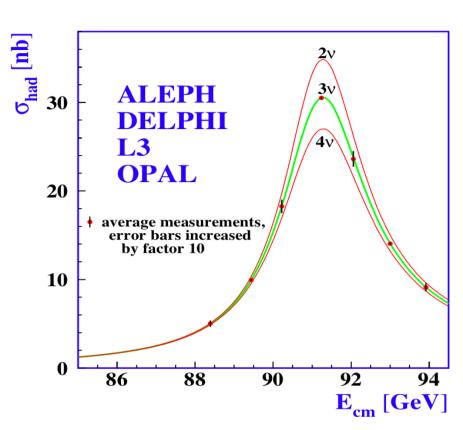
- Data bins are considered as independent observations
- Systematic uncertainties




→In total, 70 systematic uncertainties in SK-I and SK-II combined analysis


Zenith Distributions of v_{μ} - v_{τ} Oscillation

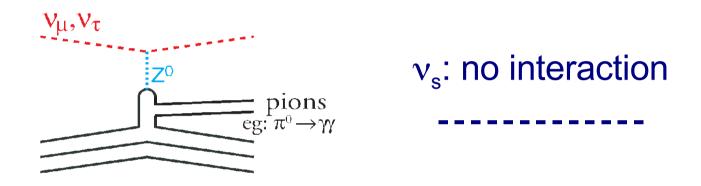
Standard Mixing Parameters



p-value=18%

Must It Be Tau Neutrino?

LEP experiments:
 Z decay cross section indicates there are only three neutrino flavors:
 N_v=2.992±0.020

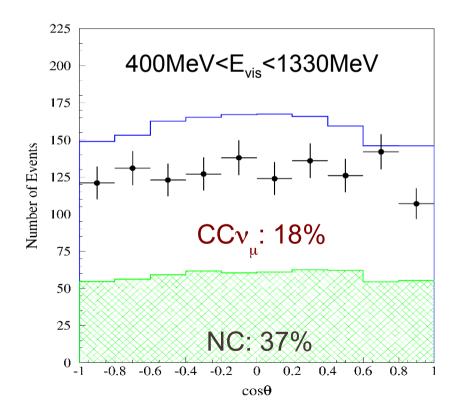

- If only three flavors of neutrinos, it must be tau neutrino
 - > $\nu_{_{\! \mu}}$ - $\nu_{_{\! e}}$ oscillation does not explain the Super-K observation
 - Chooz and Palo Verde experiments
 ⇒ NO $\bar{v}_e \rightarrow \bar{v}_x$ oscillation at the scale of Δm²~10-3eV²

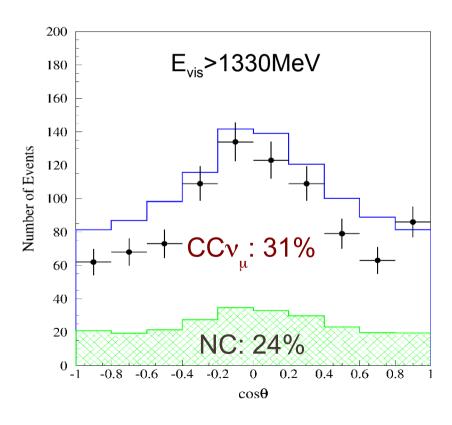
Sterile Neutrinos Are Possible

- Sterile neutrino (v_s : no electric, strong or weak charge) is not charged under Standard Model \rightarrow a potential candidate of atmospheric neutrino oscillation
 - Some theoretical models do predict the existence of sterile neutrinos
 - e.g. right-handed neutrino to explain neutrino mass
 - Some observation are in favor of the existence of sterile neutrinos
 - Sterile neutrino helps to solve the LSND anomaly
 - Sterile neutrino helps to solve the nuclear synthesis problem during the supernova R-process
- → Compare ν_{μ} - ν_{τ} oscillation and ν_{μ} - ν_{s} oscillation

Signatures of Sterile Neutrinos

Based on the definition of sterile neutrino:

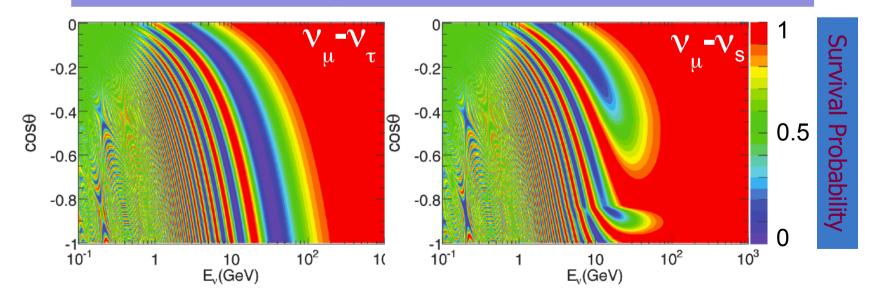



Difference between $\nu_{_{\!\mu}}\!\!-\!\!\nu_{_{\!\tau}}$ oscillation and $\nu_{_{\!\mu}}\!\!-\!\!\nu_{_{\!s}}$ oscillation:

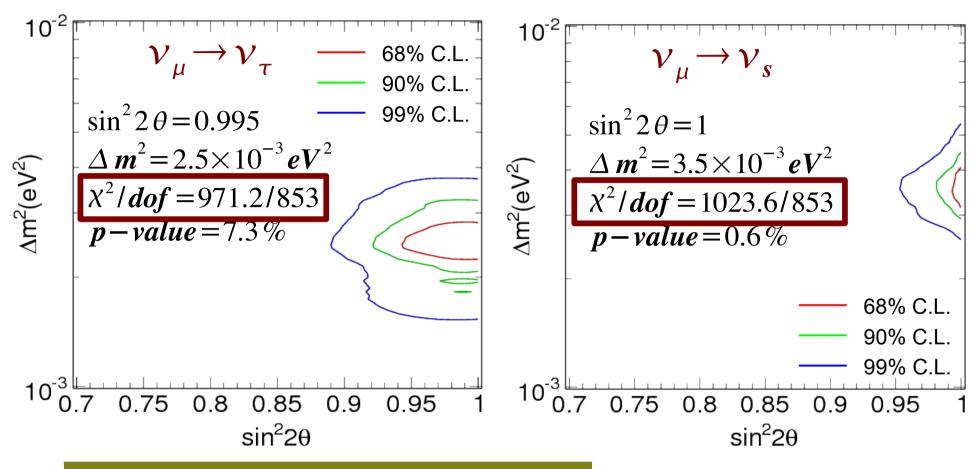
- 1. Inside the detector: less neutral current events
- 2. During the propagation: Matter Effect

1. NC Events at Super-K

- Multi-ring events: neutral pions are the NC signature at SK
- Brightest ring e-like: to remove CC $\nu_{_{_{\it ll}}}$ events
- E_{vis}>400MeV: low energy events do not point well

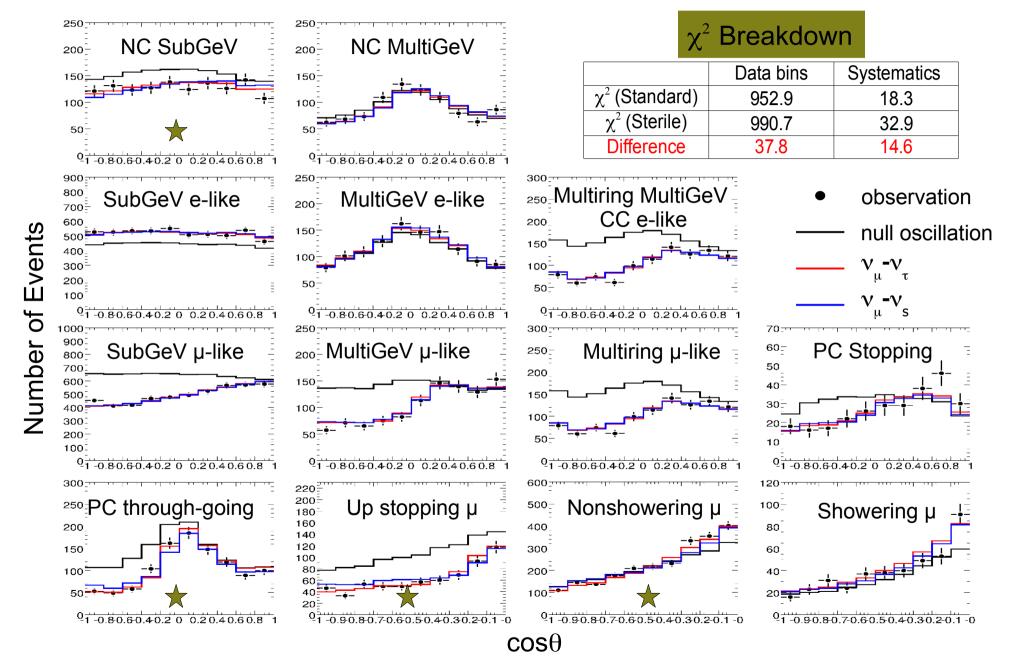

2. Matter Effect

If two neutrino flavors interact differently in matter

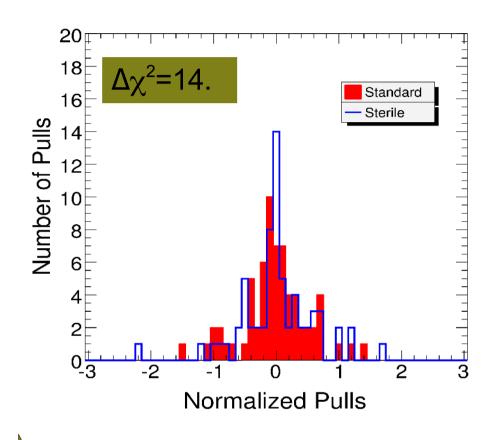

$$P_{osc} = \sin^{2} 2 \theta_{M} \sin^{2} \frac{\Delta m_{M}^{2} L}{4 E} \begin{cases} \sin^{2} 2 \theta_{M} = \frac{\sin^{2} 2 \theta}{(2 E \Delta V / \Delta m^{2} - \cos 2 \theta)^{2} + \sin^{2} 2 \theta} \\ \Delta m_{M}^{2} = \Delta m^{2} \sqrt{(2 E \Delta V / \Delta m^{2} - \cos 2 \theta)^{2} + \sin^{2} 2 \theta} \end{cases}$$

• v_{μ} - v_{s} : v_{μ} and v_{s} interact with matter differently $\Delta V = \mp \sqrt{2} G_{F} \frac{\rho_{n}}{2}$ \Rightarrow matter effect \Rightarrow oscillation is suppressed

Survival probability of $v_{_{II}}$ crossing Earth: Δm^2 =2.5x10⁻³eV², $\sin^2 2\theta$ =1

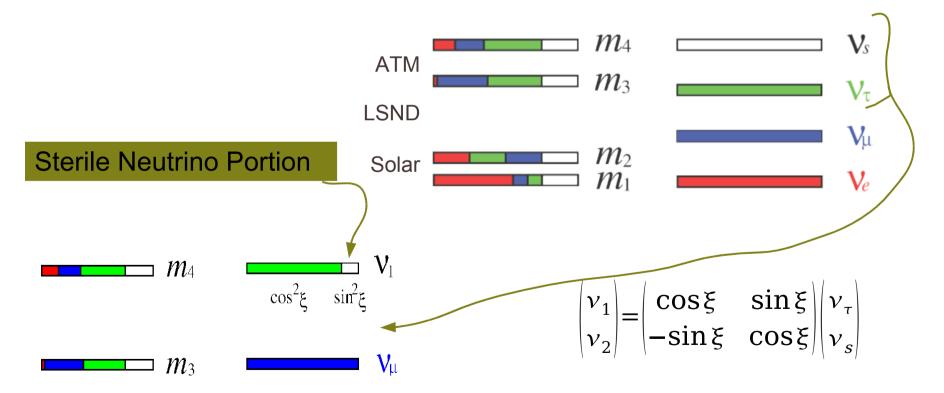

Tau Neutrino vs Sterile Neutrino

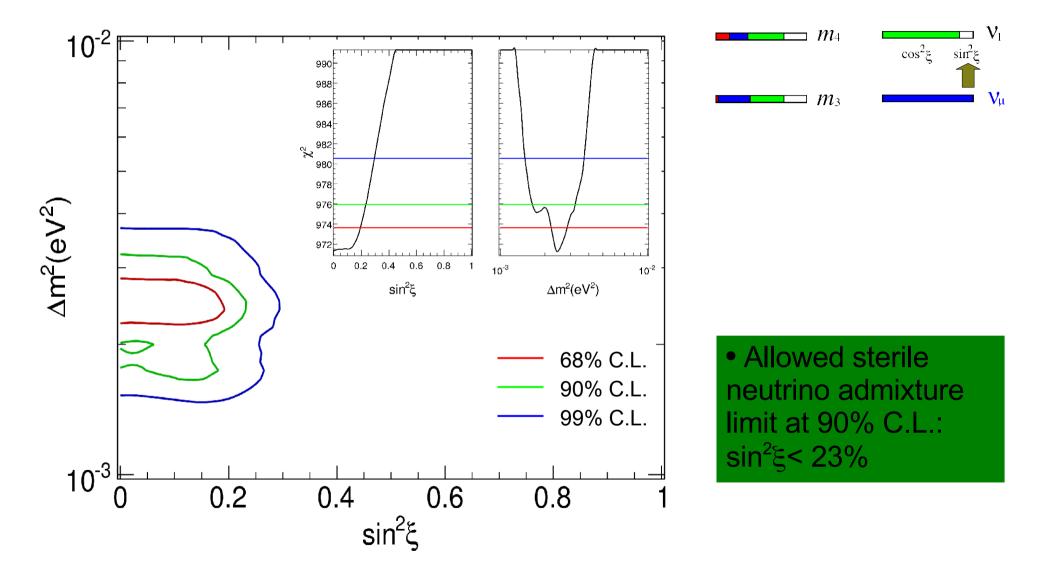
P-values calculated using toy MC method.


• Exclusion Level: 7.2σ

Comparison of Zenith Distributions

Δχ² Contribution Breakdown


Single Ring SubGeV e-like	8.0
Single Ring MultiGeV e-like	-2.1
Multi-Ring MultiGeV CC e-like	8.0
Single Ring SubGeV µ-like	-1.3
Single Ring MultiGeV µ-like	-2
Multi-Ring μ-like	3.8
NC-Enhanced SubGeV	5
NC-Enhanced MultiGeV	1.2
PC Stopping µ	2.9
PC Through-Going µ	12.3
Upward Stopping µ	7.2
Upward NonShowering µ	11.2
Upward Showering µ	-1.5
TOTAL	37.8


The right energies and baselines of those events give the strongest matter effects

An Admixture Case

- Admixtures are model dependent
- This analysis is base on Fogli et al PRD 63(053008), 2001
 - A 2+2 mass hierarchy model
 - Constructing two superposition states of v_s and v_τ two flavor mixing

Admixture Allowance

Why Violations of Lorentz and CPT?

- → The other side of the story: neutrino oscillation without mass
 - Recall: mass eigenstate mixing
 - $\rightarrow E_i = pc + m_i^2/2 p \rightarrow \text{neutrino oscillation}$
 - Violations of Lorentz invariance and CPT symmetry
 - → modified dispersion relation
 - → different energies for the same momentum
 - → neutrino oscillation
- → Important fundamental symmetries: are they broken at some high energy level? (predicted by some Quantum Gravity theories)
 - Not practical to reach ~M_P yet
 - → Seek for small effects at low energy
 - → Neutrino oscillation (interferometry) provides a promising ground
 - SK neutrino energy and pathlength coverage has great advantages for this study

Minimal Standard Model Extension

 Minimal Standard Model Extension, Kostelecky et al, hep-ph/0403088

$$- L_{mSME} = \frac{i}{2} c_{AB\mu\nu} (\bar{L}_A \gamma^{\mu} D^{\nu} L_B + D^{\nu} \bar{L}_A \gamma^{\mu} L_B) - a_{AB\mu} \bar{L}_A \gamma^{\mu} L_B$$

- The first term only violates Lorentz invariance (LIV);
 the second term violates both CPT (CPTV) and Lorentz invariance
- Two rotationally invariant cases of LIV and CPTV (only time components are considered)
 - Coleman and Glashow, PRD 59(116008), 1999
 - LIV-induced oscillation
 - Barger et al, PRL 85(5055), 2000
 - CPTV-induced oscillation

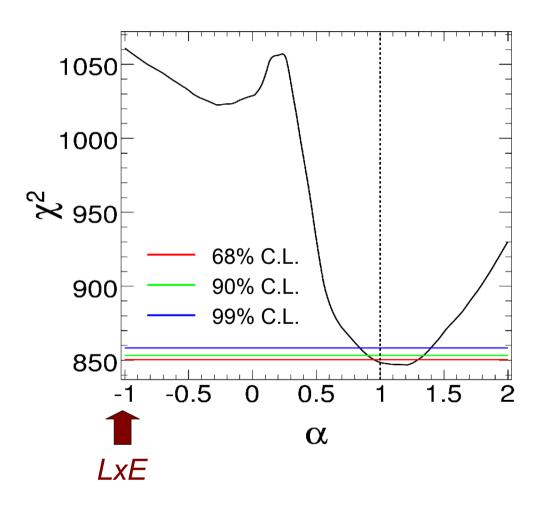
Oscillations Induced by LIV and CPTV

Rotationally invariant cases: keeping only temporal components

$$- H_{\text{int}} = - c_{AB}^{00} (\bar{L}_A \gamma^0 \partial^0 L_B + \partial^0 \bar{L}_A \gamma^0 L_B)$$

- The eigenstates by diagonalizing (rotating by θ_v) $c_{_{AB}}$ are defined as "maximum attainable velocity" eigenstates
- Modified dispersion relation: $E_i = pc pc_i$

$$\Rightarrow P_{\rm osc} = \sin^2 2\theta_v \sin^2(c^{TT} L E), c^{TT} \equiv c_A - c_B$$


$$- H_{\text{int}} = \frac{a_{AB}^{00}}{L_A} \bar{L}_A \gamma^0 L_B$$

$$\Rightarrow P_{\text{osc}} = \sin^2 2\theta_a \sin^2(\pm \Delta a L), \Delta a \equiv a_A - a_B$$

Neutrino oscillation does depend on energy

Lorentz Invariance Violation

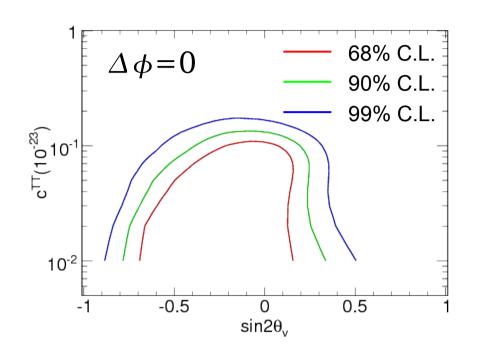
Try a more general form: $P_{\nu_{\mu} \to \nu_{\mu}} = 1 - \sin^2 2\theta_{\nu} \sin^2 \kappa L / E^{\alpha}$

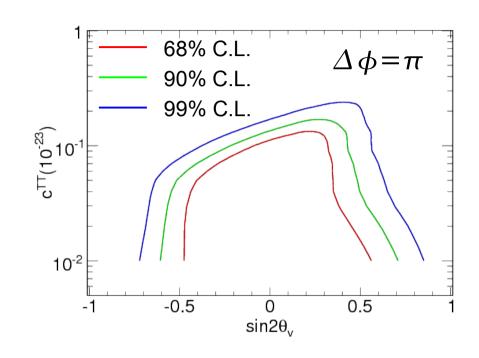
- LxE oscillation is strongly disfavored
 - Excluded at ~14σ
- *L/E* is within the 1stσ
 - 1.16+0.14/-0.21
- A natural question: what is the scale LIV might appear?

LIV as a Sub-Dominant Effect

- Considering LIV as a sub-dominant effect
- Assuming best-fit parameter values for the standard oscillation

$$P_{\nu_{\mu} \to \nu_{\mu}} = 1 - \sin^2 2\Theta \sin^2 \Omega$$


$$\tan 2\Theta = \frac{1 + (E/E_c)^2 \sin 2\theta_v}{(E/E_c)^2 \cos 2\theta_v}$$


$$\Omega = 1.27 \sqrt{(\Delta m^2 L/E)^2 \pm 4c^{TT}} \sin 2\theta_v L E + 4(c^{TT} L E)^2$$

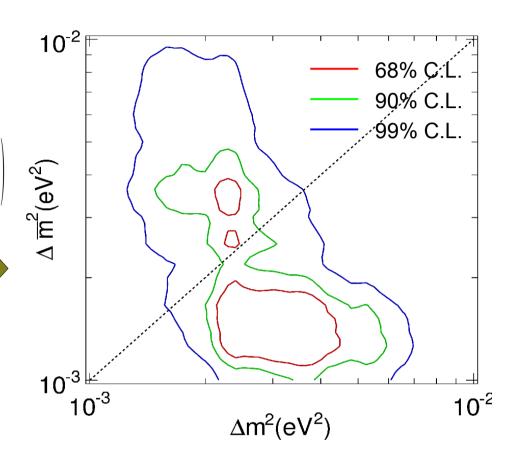
$$E_c = \sqrt{\frac{\Delta m^2}{2c^{TT}}}$$

- c^{TT}: the difference of maximum attainable velocities
- θ_v: mixing angle between two different maximal attainable velocity eigenstates
 - "+/-": the 0/π phase difference between the mass mixing matrix and the maximum attainable velocity mixing matrix

Limits on LIV

- $\Delta \phi = 0$: $C^{TT} < 1.2 \times 10^{-24}$ at 90% C.L.
 - $-\sin 2\theta_{v} = -0.12$; $c^{TT} = 0.05 \times 10^{-23}$
- $\Delta \phi = \pi$: c^{TT}<1.3x10⁻²⁴ at 90% C.L.
 - $-\sin 2\theta_{v} = -0.02$; $c^{TT} = 0.06 \times 10^{-23}$

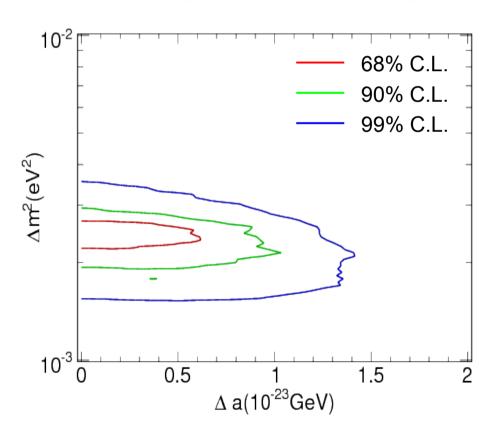
- Limits from other experiments
 - Cosmic ray spectrum:
 ~10⁻¹⁵(γ), ~10⁻²³(p)
 - Nuclear magnetic resonance frequencies:
 ~10⁻²¹(e), ~10⁻³⁰(n)


An ad hoc CPT Violation Test

 Simple assumption: neutrinos and antineutrinos could have different mass squared splittings

$$P_{\nu_{\mu} \rightarrow \nu_{\mu}/\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{\mu}} = 1 - \sin^{2} 2\theta \sin^{2} \left| \frac{(\Delta m^{2}/\Delta \bar{m}^{2})L}{4E} \right|$$

- Question: is this allowed by SK?
- Best-fit:


$$\sin 2\theta = 1
\Delta m^{2} = 3.7 \times 10^{-3} eV^{2}
\Delta \bar{m}^{2} = 1.5 \times 10^{-3} eV^{2}$$

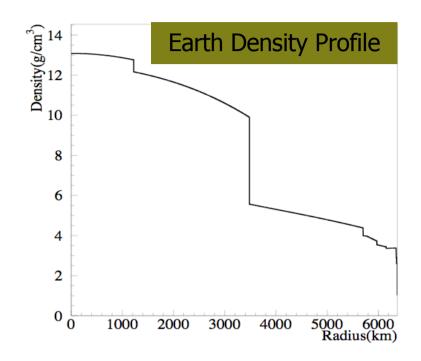
Super-K best-fit is far away from the LSND scale → then, what is the limit on CPTV?

Limit on CPT Violation

- $-a_{AB}L_A \gamma^0 L_B \Rightarrow \Delta a L$ oscillation
- As a sub-dominant effect $\Rightarrow P_{\nu_{\mu} \to \nu_{\mu}} = 1 \sin^2 2\theta \sin^2 (\frac{\Delta m^2}{4E} \pm \Delta a) L$
- Assuming maximal mixing for the mass eigenstates

• At 90% C.L.: Δa< 1.05x10⁻²³ GeV

Limits from other experiments

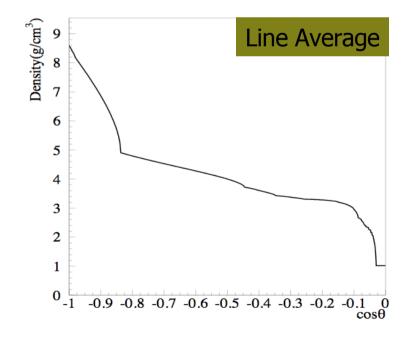

Barger et al, PRL 85(5055), 2000

- *g*-2: ~10⁻²³ GeV
- $-K^0 \bar{K}^0 : \sim 0.44 \times 10^{-18} \text{GeV}$

Summary and Conclusions

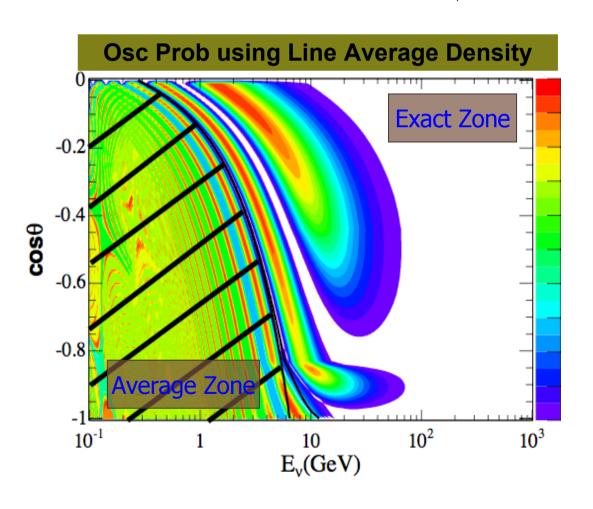
- Neutrino oscillations can happen with or without mass
- v_{μ} - v_{τ} oscillation is compared with 2 kinds of alternatives: massive neutrino oscillation and massless neutrino oscillation
 - Mass-induced v_{μ} - v_{s} oscillation: excluded at 7.2σ
 - Oscillations induced by two isotropic cases of LIV and CPTV are not able to explain Super-K atmospheric observation
- Atmospheric neutrino data provide valuable constraints on the scales of new physics beyond the Standard Model
 - An admixture 23% of v_s is allowed at 90% C.L. (2+2 mass hierarchy)
 - LIV and CPTV limits are set by considering them as sub-dominant effects:
 - c^{TT}~10⁻²⁴ at 90% C.L.
 - ∆a~10⁻²³ GeV at 90% C.L.

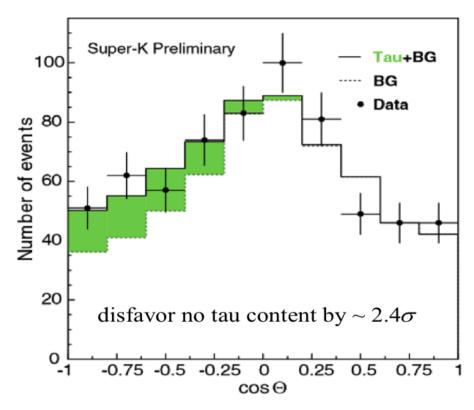
Line Average Approximation



- 1. Integrate the density along the path
- 2. Take the average

Oscillation in uniform matter


- A well-defined phase expression
- A well-defined amplitude expression


Matter Effect Reconsidered

$$P_{osc} = \sin^{2} 2 \theta_{M} \sin^{2} \frac{\Delta m_{M}^{2} L}{4 E} \begin{cases} \sin^{2} 2 \theta_{M} = \frac{\sin^{2} 2 \theta}{(2 E \Delta V / \Delta m^{2} - \cos 2 \theta)^{2} + \sin^{2} 2 \theta} \\ \Delta m_{M}^{2} = \Delta m^{2} \sqrt{(2 E \Delta V / \Delta m^{2} - \cos 2 \theta)^{2} + \sin^{2} 2 \theta} \end{cases}$$

- Good approximation for oscillation cycles
- $\rightarrow \Delta m_{\rm M}^2 L/4E > 2\pi ?$
 - YES: osc prob = $\sin^2 2\theta_{\rm M}/2$
 - NO:propagate thru Earth→ exact osc prob

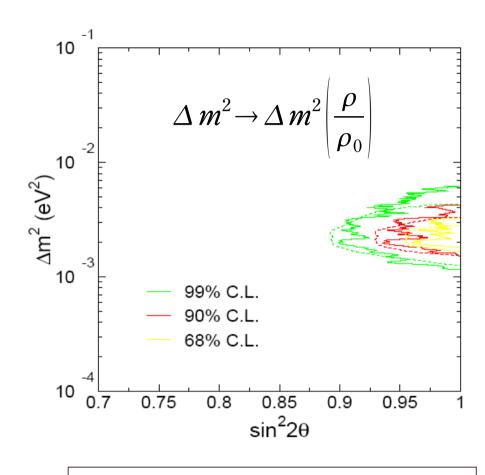
Tau Event Searching

Statistically separate (NN & likelihood) tau-like events in high energy sample; look for up-down asymmetry (after accounting for oscillation)

- Expected: 79±28(sys)
- Found:
 - Likelihood:145±48(stat)+15/-38(sys)
 - Neural Network:152±47(stat)+17/-29(sys)

No tau events assumption is disfavored by $\sim 2.4\sigma$

Testing MaVaN


 Neutrinos gain mass only in high density matter (not in air or vacuun

•Best Fit:

$$-\chi^2_{\text{MaVaN}}$$
 = 194.4/178 d.o.f
(sin²2 θ , Δ m²) = (1.00, 2.19x10⁻³ eV²)
 $-\chi^2_{\text{Standard}}$ = 174.97/178 d.o.f
(sin²2 θ , Δ m²) = (1.00, 2.11x10⁻³ eV²)

•Excluded at 4.4σ level

Standard 2-flavor oscillationsMaVaN oscillations