Studies of Neutrino Oscillations with and without Mass using Super-K

Wei Wang, Boston University
Neutrino Workshop, Kashiwa, Feb 20, 2007
Preaching Buddhism to Buddha

- Teaching Grandmas to Suck Eggs
- 班門弄斧

Ban-Men Nong-Fu

Syaka ni Seppou
An Era of Discovery in Neutrino Physics

\[\nu_\alpha = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \nu_{m_a} \]

\[\nu_\beta = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \nu_{m_b} \]

\[\rightarrow P_{\nu_\alpha \rightarrow \nu_\alpha} = 1 - \sin^2 2\theta \sin^2 \frac{\Delta m^2 L}{4E} \]

Feb 20, 2007

Massive and Massless Neutrino Osc
Outline

• Atmospheric neutrinos, Super-K experiment and events
• Standard $\nu_\mu - \nu_\tau$ oscillation analysis using zenith distributions
• Sterile neutrino as a alternative to tau neutrino
 → $\nu_\mu - \nu_\tau$ mixing vs $\nu_\mu - \nu_s$ mixing
 → An admixture analysis
• Neutrino oscillations induced by the violations of Lorentz (LIV) invariance and CPT (CPTV) symmetry
 → Fit LIV and CPTV induced oscillation against Super-K data
 → Allowed limits of LIV and CPTV
• Summary and conclusions
Atmospheric Neutrinos

- A large uncertainty on the absolute flux
- Good knowledge on flavor ratio 😊
- Up-down symmetric 😊

Abs flux: ~20% uncertainty
Well predicted ratio
Up-down symmetry
Super-Kamiokande Collaboration

- 140 collaborators from 35 institutes of 5 countries

1Institute for Cosmic Ray Research, University of Tokyo, Kashiwa, Chiba 277-8582, Japan
2Department of Physics, Boston University, Boston, Massachusetts 02215
3Physics Department, Brookhaven National Laboratory, Upton, New York 11973
4Department of Physics and Astronomy, University of California at Irvine, Irvine, California 92697-4575
5Department of Physics, California State University, Dominguez Hills, Carson, California 90747
6Department of Physics, George Mason University, Fairfax, Virginia 22030
7Department of Physics, Gifta University, Gifta, Gifta 351-193, Japan
8Department of Physics and Astronomy, University of Hawaii, Honolulu, Hawaii 96822
9Institute of Particle and Nuclear Studies, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan
10Department of Physics, Kyoto University, Kyoto, Hyogo 657-8501, Japan
11Department of Physics, Kyushu University, Fukuoka 812-8581, Japan
12Physics Division, P-23, Los Alamos National Laboratory, Los Alamos, New Mexico 87544
13Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803
14Department of Physics, University of Maryland, College Park, Maryland 20742
15Department of Physics and Astronomy, State University of New York, Stony Brook, New York 11794-3800
16Department of Physics, Niigata University, Niigata, Niigata 950-2181, Japan
17Department of Physics, Osaka University, Toyonaka, Osaka 560-0043, Japan
18Department of Physics, Seoul National University, Seoul 151-742, Korea
19Department of Systems Engineering, Shizuoka University, Hamamatsu, Shizuoka 412-8561, Japan
20Research Center for Neutrino Science, Tohoku University, Sendai, Miyagi 980-8578, Japan
21The University of Tokyo, Tokyo 113-0033, Japan
22Department of Physics, Tokai University, Hiratsuka, Kanagawa 259-1292, Japan
23Department of Physics, Tokyo Institute for Technology, Meguro, Tokyo 152-8551, Japan
24Institute of Experimental Physics, Warsaw University, 00-681 Warsaw, Poland
25Department of Physics, University of Washington, Seattle, Washington 98195-1560
Super-Kamiokande Experiment

- A 50 kt water Cherenkov detector
 - Inner detector and outer detector optically separated
 - ID: 25in PMTs; gaps filled by black sheet
 - OD: 8in PMTs with wavelength shifters, wall covered by reflective Tyvek

- Operating periods
 - **SK-I: 1996 – 2001**
 - 1489 days livetime
 - ~40% ID coverage
 - **SK-II: 2003 – 2005**
 - 804 days livetime
 - Half ID tubes (acrylic&FRP)
 - ~20% coverage
 - **SK-III: since Summer 2006**
 - ID tubes (acrylic&FRP)
 - fully recovered
Super-K Neutrino Events

- Neutrino interaction
 → charged particles
 → Cherenkov radiation
 → recorded by PMTs

- Neutrino event categories
 - Fully contained
 - Partially contained
 - Upward going μ
Event Reconstruction

- Vertex finding
- Ring recognition
- PID (e-/μ-like)
- Momentum reconstruction

FC Single Ring Events

<table>
<thead>
<tr>
<th>Event Type</th>
<th>CCνμ</th>
<th>CCνe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sub-GeV</td>
<td>94.5%</td>
<td>82.6%</td>
</tr>
<tr>
<td>Multi-GeV</td>
<td>99.4%</td>
<td>88.0%</td>
</tr>
</tbody>
</table>
Five Decades of Energy

Number of events vs. $E_{\nu}(\text{GeV})$

- e-like
- single ring μ
- multi-ring μ
- PC through

- Fully Contained (FC)
- Multi-Ring (MC)
- PC STOP
- PC THRU
- UP$_\mu$ STOP
- UP$_\mu$ THRU
- UP$_\mu$ SHOWER

Energy ranges:
- $\sim 1\text{GeV}$
- $\sim 3\text{GeV}$
- $\sim 5\text{GeV}$
- $\sim 10\text{GeV}$
- $\sim 100\text{GeV}$
- $\sim 1\text{TeV}$
Four Decades of Pathlengths

- Large ranges of L and E
- Various matter densities

\Rightarrow great advantages for studying exotic phenomena
Atmospheric Neutrino Observations

SubGeV e-like
MultiGeV e-like
Multiring MultiGeV CC e-like
Null oscillation prediction

SubGeV μ-like
MultiGeV μ-like
Multiring μ-like

PC Stopping

PC through-going
Up stopping μ
Nonshowing μ
Showering μ

Number of Events

$\cos \theta$
Data Analysis: Binning

\[P_{\nu_{\mu} \rightarrow \nu_{\mu}} = 1 - \sin^2 2\theta \sin^2 \frac{\Delta m^2 L}{4E} \]

- For SK-I and SK-II, 2×38 energy bins ×10 zenith bins = 760 bins
Data Analysis: Pull Method

$$\chi^2 = \sum_{i=1}^{N} 2(N_i^{\text{exp}} - N_i^{\text{obs}} - N_i^{\text{obs}} \ln \frac{N_i^{\text{obs}}}{N_i^{\text{exp}}}) + \sum_{j=1}^{M} \left(\frac{\epsilon_j}{\sigma_j} \right)^2$$

Data bins: likelihood ratio
Systematic uncertainties: Gaussian

$$N_i^{\text{exp0}} = P_{\text{survival}}(\text{model x with parameters } \vec{x}) \cdot N_i^{\text{nosc}}$$

$$N_i^{\text{exp}} = (1 + \sum_{j=1}^{M} f_i^j \epsilon_j) \cdot N_i^{\text{exp0}}$$

Expected number of events without considering systematics

Plug in different models and find the minimum chi-squares
1. Minimize wrt systemic terms
 - Solving a linear equation set
2. Minimize wrt model parameters
 - searching on a grid in parameter space

Predicted events based on ν flux
Combining SK-I and SK-II

• Data bins are considered as independent observations

• Systematic uncertainties

 ➔ Identical for SK-I and SK-II
 - Atm neutrino flux (14)
 - Neutrino interaction (12)
 - Solar activity (1)

 ➔ Independent for SK-I and SK-II
 - Data selection and event reconstruction (21)

➔ In total, 70 systematic uncertainties in SK-I and SK-II combined analysis
Zenith Distributions of $\nu_\mu - \nu_\tau$ Oscillation

Number of Events

- **SubGeV e-like**
- **MultiGeV e-like**
- **Multiring MultiGeV CC e-like**
- **SubGeV μ-like**
- **MultiGeV μ-like**
- **Multiring μ-like**
- **PC Stopping**
- **PC through-going**
- **Up stopping μ**
- **Nonshowering μ**
- **Showering μ**

- \bullet observation
- $\nu_\mu - \nu_\tau$
- null oscillation

$$\cos \theta$$

Feb 20, 2007

Massive and Massless Neutrino Osc
Standard Mixing Parameters

$$\nu_\mu \rightarrow \nu_\tau$$

$$\sin^2 2\theta = 1$$
$$\Delta m^2 = 2.5 \times 10^{-3} \text{ eV}^2$$
$$\chi^2 / \text{dof} = 839.7 / 755$$
$$p-value = 18\%$$

$$\sin^2 2\theta = 1$$
$$\Delta m^2 = 2.5 \times 10^{-3} \text{ eV}^2$$
$$\chi^2 / \text{dof} = 839.7 / 755$$
$$p-value = 18\%$$
Must It Be Tau Neutrino?

- LEP experiments: Z decay cross section indicates there are only three neutrino flavors: \(N_\nu = 2.992 \pm 0.020 \)

- If only three flavors of neutrinos, it must be tau neutrino
 - \(\nu_\mu \rightarrow \nu_e \) oscillation does not explain the Super-K observation
 - Chooz and Palo Verde experiments
 \[\Rightarrow \text{NO} \; \bar{\nu}_e \rightarrow \bar{\nu}_x \; \text{oscillation at the scale of} \; \Delta m^2 \sim 10^{-3} \text{eV}^2 \]
Sterile Neutrinos Are Possible

- Sterile neutrino (ν_s: no electric, strong or weak charge) is not charged under Standard Model \rightarrow a potential candidate of atmospheric neutrino oscillation
 - Some theoretical models do predict the existence of sterile neutrinos
 - e.g. right-handed neutrino to explain neutrino mass
 - Some observation are in favor of the existence of sterile neutrinos
 - Sterile neutrino helps to solve the LSND anomaly
 - Sterile neutrino helps to solve the nuclear synthesis problem during the supernova R-process

→ Compare $\nu_\mu - \nu_\tau$ oscillation and $\nu_\mu - \nu_s$ oscillation
Signatures of Sterile Neutrinos

Based on the definition of sterile neutrino:

\[\nu_\mu, \nu_\tau \]

\[\nu_s: \text{no interaction} \]

\[\begin{array}{c}
\text{pions} \\
\text{eg: } \pi^0 \rightarrow \gamma \gamma
\end{array} \]

Difference between \(\nu_\mu - \nu_\tau \) oscillation and \(\nu_\mu - \nu_s \) oscillation:

1. Inside the detector: less neutral current events
2. During the propagation: Matter Effect
1. NC Events at Super-K

- Multi-ring events: neutral pions are the NC signature at SK
- Brightest ring e-like: to remove CC ν_μ events
- $E_{\text{vis}} > 400\text{MeV}$: low energy events do not point well

![Graphs showing NC and CC events](image-url)

- For $400\text{MeV} < E_{\text{vis}} < 1330\text{MeV}$:
 - NC: 37%
 - CC ν_μ: 18%

- For $E_{\text{vis}} > 1330\text{MeV}$:
 - NC: 24%
 - CC ν_μ: 31%
2. Matter Effect

- If two neutrino flavors interact differently in matter

\[P_{\text{osc}} = \sin^2 2\theta_M \sin^2 \frac{\Delta m^2_M L}{4E} \]

\[\sin^2 2\theta_M = \frac{\sin^2 2\theta}{(2E \Delta V / \Delta m^2 - \cos 2\theta)^2 + \sin^2 2\theta} \]

\[\Delta m^2_M = \Delta m^2 \sqrt{(2E \Delta V / \Delta m^2 - \cos 2\theta)^2 + \sin^2 2\theta} \]

- \(\nu_\mu - \nu_\mu \) and \(\nu_s \) interact with matter differently

\[\Rightarrow \text{matter effect} \Rightarrow \text{oscillation is suppressed} \]

Survival probability of \(\nu_\mu \) crossing Earth: \(\Delta m^2 = 2.5 \times 10^{-3} \text{eV}^2 \), \(\sin^2 2\theta = 1 \)
Tau Neutrino vs Sterile Neutrino

\[\nu_\mu \rightarrow \nu_\tau \]

\[\sin^2 2\theta = 0.995 \]

\[\Delta m^2 = 2.5 \times 10^{-3} \text{eV}^2 \]

\[\chi^2 / \text{dof} = 971.2 / 853 \]

\[p\text{-value} = 7.3\% \]

\[\nu_\mu \rightarrow \nu_s \]

\[\sin^2 2\theta = 1 \]

\[\Delta m^2 = 3.5 \times 10^{-3} \text{eV}^2 \]

\[\chi^2 / \text{dof} = 1023.6 / 853 \]

\[p\text{-value} = 0.6\% \]

- **Exclusion Level**: 7.2\(\sigma\)

P-values calculated using toy MC method.
Comparison of Zenith Distributions

χ^2 Breakdown

<table>
<thead>
<tr>
<th></th>
<th>Data bins</th>
<th>Systematics</th>
</tr>
</thead>
<tbody>
<tr>
<td>χ^2 (Standard)</td>
<td>952.9</td>
<td>18.3</td>
</tr>
<tr>
<td>χ^2 (Sterile)</td>
<td>990.7</td>
<td>32.9</td>
</tr>
<tr>
<td>Difference</td>
<td>37.8</td>
<td>14.6</td>
</tr>
</tbody>
</table>

Data bins

<table>
<thead>
<tr>
<th></th>
<th>952.9</th>
<th>18.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>χ^2 (Standard)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>χ^2 (Sterile)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Difference</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Number of Events

<table>
<thead>
<tr>
<th></th>
<th>990.7</th>
<th>32.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>χ^2 (Standard)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>χ^2 (Sterile)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Difference</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$\cos \theta$

<table>
<thead>
<tr>
<th></th>
<th>37.8</th>
<th>14.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>χ^2 (Standard)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>χ^2 (Sterile)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Difference</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
$\Delta \chi^2$ Contribution Breakdown

<table>
<thead>
<tr>
<th>Category</th>
<th>$\Delta \chi^2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single Ring SubGeV e-like</td>
<td>0.8</td>
</tr>
<tr>
<td>Single Ring MultiGeV e-like</td>
<td>-2.1</td>
</tr>
<tr>
<td>Multi-Ring MultiGeV CC e-like</td>
<td>0.8</td>
</tr>
<tr>
<td>Single Ring SubGeV μ-like</td>
<td>-1.3</td>
</tr>
<tr>
<td>Single Ring MultiGeV μ-like</td>
<td>-2</td>
</tr>
<tr>
<td>Multi-Ring μ-like</td>
<td>3.8</td>
</tr>
<tr>
<td>NC-Enhanced SubGeV</td>
<td>5</td>
</tr>
<tr>
<td>NC-Enhanced MultiGeV</td>
<td>1.2</td>
</tr>
<tr>
<td>PC Stopping μ</td>
<td>2.9</td>
</tr>
<tr>
<td>PC Through-Going μ</td>
<td>12.3</td>
</tr>
<tr>
<td>Upward Stopping μ</td>
<td>7.2</td>
</tr>
<tr>
<td>Upward NonShowering μ</td>
<td>11.2</td>
</tr>
<tr>
<td>Upward Showering μ</td>
<td>-1.5</td>
</tr>
<tr>
<td>TOTAL</td>
<td>37.8</td>
</tr>
</tbody>
</table>

- The right energies and baselines of those events give the strongest matter effects

$\Delta \chi^2 = 14.$
An Admixture Case

- Admixtures are model dependent
- This analysis is based on Fogli et al. PRD 63(053008), 2001
 - A 2+2 mass hierarchy model
 - Constructing two superposition states of ν_s and $\nu_\tau \rightarrow$ two flavor mixing

\[
\begin{pmatrix}
\nu_1 \\
\nu_2
\end{pmatrix} =
\begin{pmatrix}
\cos \xi & \sin \xi \\
-\sin \xi & \cos \xi
\end{pmatrix}
\begin{pmatrix}
\nu_\tau \\
\nu_s
\end{pmatrix}
\]

Sterile Neutrino Portion
Admixture Allowance

- Allowed sterile neutrino admixture limit at 90% C.L.: $\sin^2\xi < 23\%$
Why Violations of Lorentz and CPT?

→ The other side of the story: neutrino oscillation without mass

 • Recall: mass eigenstate mixing
 → $E_i = pc + \frac{m_i^2}{2} \, p$ → neutrino oscillation

 • Violations of Lorentz invariance and CPT symmetry
 → modified dispersion relation
 → different energies for the same momentum
 → neutrino oscillation

→ Important fundamental symmetries: are they broken at some high energy level? (predicted by some Quantum Gravity theories)

 • Not practical to reach $\sim M_P$ yet
 → Seek for small effects at low energy
 → Neutrino oscillation (interferometry) provides a promising ground

 ✔ SK neutrino energy and pathlength coverage has great advantages for this study
Minimal Standard Model Extension

 \[L_{\text{SME}} = \frac{i}{2} c_{AB\mu\nu} (\bar{L}_A \gamma^\mu D^\nu L_B + D^\nu L_A \gamma^\mu L_B) - a_{AB\mu} \bar{L}_A \gamma^\mu L_B \]
 - The first term only violates Lorentz invariance (LIV);
 - the second term violates both CPT (CPTV) and Lorentz invariance

- Two rotationally invariant cases of LIV and CPTV (only time components are considered)
 - Coleman and Glashow, PRD 59(116008), 1999
 - LIV-induced oscillation
 - Barger et al, PRL 85(5055), 2000
 - CPTV-induced oscillation
Oscillations Induced by LIV and CPTV

• Rotationally invariant cases: keeping only temporal components

\[H_{\text{int}} = -c_{AB}^{00}(\bar{L}_A \gamma^0 \partial^0 L_B + \partial^0 \bar{L}_A \gamma^0 L_B) \]

• The eigenstates by diagonalizing (rotating by \(\theta_v \)) \(c_{AB} \)
 are defined as “maximum attainable velocity” eigenstates

• Modified dispersion relation: \(E_i = p c - p c_i \)
 \[\Rightarrow P_{\text{osc}} = \sin^2 2\theta_v \sin^2 (c_{TT} L E), \quad c_{TT} \equiv c_A - c_B \]

\[H_{\text{int}} = a_{AB}^{00} \bar{L}_A \gamma^0 L_B \]

 \[\Rightarrow P_{\text{osc}} = \sin^2 2\theta_a \sin^2 (\pm \Delta a L), \quad \Delta a \equiv a_A - a_B \]

• Neutrino oscillation does depend on energy
Lorentz Invariance Violation

Try a more general form: \(P_{\nu_\mu \rightarrow \nu_\mu} = 1 - \sin^2 2\theta \sin^2 \kappa L/E^\alpha \)

- \(LxE \) oscillation is strongly disfavored
 - Excluded at \(\sim 14\sigma \)
- \(L/E \) is within the 1\(^{st}\)\(\sigma\)
 - 1.16\(+0.14/-0.21\)
- A natural question: what is the scale LIV might appear?

\[\chi^2 \]

\[LxE \]

\[\alpha \]

\[\text{68% C.L.} \]
\[\text{90% C.L.} \]
\[\text{99% C.L.} \]
LIV as a Sub-Dominant Effect

- Considering LIV as a sub-dominant effect
- Assuming best-fit parameter values for the standard oscillation

\[P_{\nu_\mu \rightarrow \nu_\mu} = 1 - \sin^2 2\Theta \sin^2 \Omega \]

\[
\tan 2\Theta = \frac{1 + (E/E_c)^2 \sin 2\theta_v}{(E/E_c)^2 \cos 2\theta_v}
\]

\[
\Omega = 1.27 \sqrt{(\Delta m^2 L/E)^2 + 4c^{TT}\sin 2\theta_v L E + 4(c^{TT} L E)^2}
\]

\[
E_c = \sqrt{\frac{\Delta m^2}{2c^{TT}}}
\]

- \(c^{TT}\): the difference of maximum attainable velocities
- \(\theta_v\): mixing angle between two different maximal attainable velocity eigenstates
- “+/-”: the 0/\(\pi\) phase difference between the mass mixing matrix and the maximum attainable velocity mixing matrix
Limits on LIV

- **$\Delta \phi = 0$:** $c^{TT} < 1.2 \times 10^{-24}$ at 90% C.L.
 - $\sin^2 \theta_v = -0.12$; $c^{TT} = 0.05 \times 10^{-23}$
- **$\Delta \phi = \pi$:** $c^{TT} < 1.3 \times 10^{-24}$ at 90% C.L.
 - $\sin^2 \theta_v = -0.02$; $c^{TT} = 0.06 \times 10^{-23}$

Limits from other experiments
- Cosmic ray spectrum: $\sim 10^{-15}(\gamma), \sim 10^{-23}(p)$
- Nuclear magnetic resonance frequencies: $\sim 10^{-21}(e), \sim 10^{-30}(n)$
An *ad hoc* CPT Violation Test

- **Simple assumption:** neutrinos and antineutrinos could have different mass squared splittings

 \[P_{\nu_\mu \rightarrow \nu_\mu / \bar{\nu}_\mu \rightarrow \bar{\nu}_\mu} = 1 - \sin^2 2\theta \sin^2 \left(\frac{\Delta m^2 / \Delta \bar{m}^2}{4E} L \right) \]

- **Question:** is this allowed by SK?

- **Best-fit:**

 \[
 \begin{align*}
 \sin 2\theta &= 1 \\
 \Delta m^2 &= 3.7 \times 10^{-3} \text{ eV}^2 \\
 \Delta \bar{m}^2 &= 1.5 \times 10^{-3} \text{ eV}^2
 \end{align*}
 \]

Super-K best-fit is far away from the LSND scale → then, what is the limit on CPTV?
Limit on CPT Violation

- $-a_{AB} L_A \gamma^0 L_B \Rightarrow \Delta a L$ oscillation
- As a sub-dominant effect $\Rightarrow P_{\nu_\mu \to \nu_\mu} = 1 - \sin^2 2\theta \sin^2(\frac{\Delta m^2}{4E} \pm \Delta a) L$
- Assuming maximal mixing for the mass eigenstates

- At 90% C.L.: $\Delta a < 1.05 \times 10^{-23}$ GeV

- Limits from other experiments
 - Barger et al, PRL 85(5055), 2000
 - $g-2$: $\sim 10^{-23}$ GeV
 - $K^0 - \bar{K}^0$: $\sim 0.44 \times 10^{-18}$ GeV
Summary and Conclusions

- Neutrino oscillations can happen with or without mass
- $\nu_\mu \rightarrow \nu_\tau$ oscillation is compared with 2 kinds of alternatives: massive neutrino oscillation and massless neutrino oscillation
 - Mass-induced $\nu_\mu \rightarrow \nu_s$ oscillation: excluded at 7.2σ
 - Oscillations induced by two isotropic cases of LIV and CPTV are not able to explain Super-K atmospheric observation
- Atmospheric neutrino data provide valuable constraints on the scales of new physics beyond the Standard Model
 - An admixture 23% of ν_s is allowed at 90% C.L. (2+2 mass hierarchy)
 - LIV and CPTV limits are set by considering them as sub-dominant effects:
 - $c^{TT} \sim 10^{-24}$ at 90% C.L.
 - $\Delta a \sim 10^{-23}$ GeV at 90% C.L.
Line Average Approximation

1. Integrate the density along the path
2. Take the average

Earth Density Profile

Oscillation in uniform matter
- A well-defined phase expression
- A well-defined amplitude expression

Line Average
Matter Effect Reconsidered

\[P_{osc} = \sin^2 2\theta_M \sin^2 \frac{\Delta m^2_M L}{4E} \]

\[
\sin^2 2\theta_M = \frac{\sin^2 2\theta}{(2E \Delta V/\Delta m^2 - \cos 2\theta)^2 + \sin^2 2\theta}
\]

\[
\Delta m^2_M = \Delta m^2 \sqrt{(2E \Delta V/\Delta m^2 - \cos 2\theta)^2 + \sin^2 2\theta}
\]

- Good approximation for oscillation cycles
 \[\Delta m^2_M L/4E > 2\pi ? \]
 - YES:
 osc prob = \(\sin^2 2\theta_M /2 \)
 - NO:
 propagate thru Earth
 \[\rightarrow \text{exact osc prob} \]
Tau Event Searching

- **Expected:** $79 \pm 28\text{(sys)}$
- **Found:**
 - **Likelihood:** $145 \pm 48\text{(stat)} + 15/-38\text{(sys)}$
 - **Neural Network:** $152 \pm 47\text{(stat)} + 17/-29\text{(sys)}$

No tau events assumption is disfavored by $\sim 2.4\sigma$

Statistically separate (NN & likelihood) tau-like events in high energy sample; look for up-down asymmetry (after accounting for oscillation)
Testing MaVaN

• Neutrinos gain mass only in high density matter (not in air or vacuum)

• Best Fit:
 \[\chi^2_{\text{MaVaN}} = 194.4/178 \text{ d.o.f} \]
 \[(\sin^2 2\theta, \Delta m^2) = (1.00, 2.19 \times 10^{-3} \text{ eV}^2) \]
 \[\chi^2_{\text{Standard}} = 174.97/178 \text{ d.o.f} \]
 \[(\sin^2 2\theta, \Delta m^2) = (1.00, 2.11 \times 10^{-3} \text{ eV}^2) \]

• Excluded at 4.4\(\sigma\) level

Under study: \[\Delta m^2 \rightarrow \Delta m^2 \left(\frac{\rho}{\rho_0} \right)^n \]

\[\Delta m^2 \rightarrow \Delta m^2 \left(\frac{\rho}{\rho_0} \right) \]

99% C.L.
90% C.L.
68% C.L.

--- Standard 2-flavor oscillations
--- MaVaN oscillations