<u>第19回「宇宙ニュートリノ」研究会</u>

Search for $v_{\mu} \rightarrow v_{e}$ oscillation in the K2K experiment

July 6, 2006 Shimpei Yamamoto (Kyoto Univ.)

Outline

- Motivation for $v_{\mu} \rightarrow v_{e}$ search
- The K2K experiment
- Search for $v_{\mu} \rightarrow v_{e}$ oscillation
- Constraint on neutrino oscillation parameters
- Summary

Motivation for $v_{\mu} \rightarrow v_{e}$ search

- No measurement of θ_{13} , but a limit of $\theta_{13} < 12^{\circ}$ (reacotor v)
- We $(P(v_{\mu} \rightarrow v_{e}) \approx sin^{2} 2\theta_{13} sin^{2} \theta_{23} sin^{2} (\Delta m_{31}^{2} L_{4E}) \rightarrow v_{e}$ oscillation ~0.5 ~2.8 × 10⁻³ eV²
- First experimental search with a ν_{μ} beam and a long baseline
- If $\theta_{13} \neq 0$, LBL experiments can prove CPV in lepton sector
- Pioneering research toward the next generation LBL experiment (T2K)
 - Neutral pion rejection (crucial background for $v_{\mu} \rightarrow v_{e}$ search)

The K2K Experiment

"KEK to Kamioka long baseline neutrino oscillation experiment"

- v_{μ} beam (~98% purity)
- $E_v = \sim 1.3 \text{GeV}$ (in average)
- 250km baseline

compared w/ the expectation from near detector measurement.

→ v_{μ} disappearance (confirm atm-v result) → v_{e} appearance

Data Sample

- 2 experimental phases
 - 1999.6-2001.6 with SK-1 → K2K-1
 - − 2002.12-2004.11 with SK-2 \rightarrow K2K-2
- Protons on target (POT): 9.2x10¹⁹ (entire data sample)
 - 4.8×10¹⁹POT in K2K-1
 - 4.4×10^{19} POT in K2K-2

Search for $v_{\mu} \rightarrow v_{e}$ oscillation

- Look for the excess of ν_{e} events at SK
 - Find v_e signal candidates in SK
 - Predict # of background events
- Prediction of SK events

$$N_{SK} \times \frac{MC \text{ event rate of } v_e \text{ signal}}{MC \text{ total event rate}}$$

- N_{SK}: total number of ν events estimated from ND event rate.
 - Cancellation of syst. uncertainties of cross-section and absolute flux

Estimate of SK event rate

- Neutrino interaction rate meas. with $1KT(N_{KT}^{int})$
- The same detector technology as Super-K. Total num. of SK events:

$$N_{SK} = \Phi_{SK} \times \sigma \times \varepsilon_{SK}$$

= $N_{KT}^{int} \times \frac{\int \Phi_{SK}(E_v)\sigma(E_v)dE_v}{\int \Phi_{ND}(E_v)\sigma(E_v)dE_v} \times \frac{M_{SK}}{M_{KT}} \times \varepsilon_{SK}$
= Far/Near Ratio ~1 × 10⁻⁶

M: Fiducial mass M_{SK} =22.5kt, M_{KT} =25t ε_{SK} : detection efficiency =77.0 (78.2)% for K2K-I (K2K-II)

$$N_{SK} = 158.4^{+9.4}_{-8,7}$$

JULY 6, 2006

Observation of beam neutrinos

(BG: 1.6events within \pm 500ms 2.4x10⁻³ events in 1.5µs)

Signature of $v_{\mu} \rightarrow v_{e}$ oscillation

- v_e CC quasi-elastic interaction
 - Dominant process at E~0.6GeV.
 - Only an electron is visible.

Event display of v_e CC-QE event

Background for $\nu_{\mu} \rightarrow \nu_{e}$ search

- Dominant background
 - π⁰ production event with one reconstructed gamma-ray

Remaining background originates from v_e in the beam

- Intrinsically irreducible.
- A fraction of 0.9% at SK
- Beam- ν_e contribution is estimated with MC
 - MC is validated by the near detector measurements.

Neutral pion background

Dominant process: single π^0 production such as Δ resonance via NC interaction (NC1 π^0)

 $\nu + N \rightarrow \nu + \Delta (\rightarrow \pi^0 + N')$

- Characteristics of π^0 background
 - Small opening angle of 2 gamma-rays
 - Small energy of 2nd gamma-ray

π^0 reconstruction algorithm

- Assume 2 emitted gamma-rays from a vertex
- Inputs to the fitter
 - Event vertex
 - Visible energy (E_{vis}, electron-equivalent energy)
 - Direction of 1^{st} ring ($\mathbf{r}_{\gamma 1}$)
- Outputs
 - Momentum vectors of 2 gamma-rays ($E_{\gamma 1}$, $E_{\gamma 2}$, $r_{\gamma 2}$)
- Fitting method
 - Share E_{vis} with 2 gamma-ray (no kinematical constraint of π^0 decay)
 - Compare the observed charge distance DMTs with the MC expectations based on Poisson $\chi^2 \chi^2 = \sum 2(q_i^{exp} q_i^{obs}) + 2q_i^{obs} ln \frac{q_i^{obs}}{q^{exp}}$

e/π^0 separation

 e/π⁰ separation using invariant mass of 2 gamma-rays:

$$M_{inv} = \sqrt{2E_{\gamma 1}E_{\gamma 2}(1-\cos\theta_{\gamma \gamma})}$$

- $M_{inv} \sim \pi^0$ mass for π^0 events
- M_{inv} <100MeV/c² for singleelectron events
- Reconstruct 2nd fake ring for single-electron events:
 - Small $\theta_{\gamma\gamma} \sim 20^{\circ}$
 - Small $E_{\gamma 2}^{''}$ (E $\gamma 2/(E\gamma 1+E\gamma 2)\sim 0.2$)
 - → M_{inv} depends on electron energy (E_e)

Validation of π^0 fitter

- Atm. v 1-ring shower-type events
 - ~94% fraction of electron (v_e)
 - ~6% fraction of π^0 via NC
- $M_{inv} \sim \pi^0$ mass for π^0 events
 - Events clustered around M_{inv}~π⁰ mass in data, as we expecte according to MC NC interaction events.

Validation of π^0 fitter

100

50

0

60

40

SK-1

electron

100

electron

SK-2

Data

MC

200 M_{inv} (MeV/c²)

> Data MC

200 M_{inv} (MeV/c²)

- Good agreements for both v_e and π0 compositions
- M_{inv} peak for π^0 's:
 - 122(118)MeV/c² for SK-1(2) data
 - 116(117)MeV/c² for MC events
 - → Good agreement btw/ data & MC
 - Energy scale error: ~3MeV
 - Stat. error: 2~3MeV

e error: $2\sim 3 \text{MeV}$ MC events are normalized by live time SK-1: 1492 days, SK-2: 627 days

Neutral pion rejection cut

 Apply a π⁰ rejection cut in K2K data sample

$$\begin{cases} M_{inv} < \frac{3}{20}E_{e} + 40MeV & \text{for } E_{e} < 400MeV \\ M_{inv} < 100MeV & \text{for } E_{e} \ge 400MeV \end{cases}$$

- Optimized to maximize the sensitivity on sin²2θ_{μe}
- 4 of 5 remaining events are rejected.
 - Rejection capability is consistent w/ MC prediction of 70%

16

Numbers of observed & expected

第19回「宇宙ニュートリノ」研究会

			<u> </u>
— K2K-1 —	ν_{μ} MC	beam v_e	Data
Fully contained	81.1	0.81	55
Single ring	50.92	0.47	33
Shower-type ring	2.66	0.40	3
Visible energy cut	2.47	0.40	2
No decay electron	1.90	0.35	1
Non-π ⁰ like	0.58	0.17	0
— K2K-2 —	ν_{μ} MC	beam v_e	Data
— K2K-2 — Fully contained	ν _μ MC 77.4	beam v _e 0.86	Data 57
— K2K-2 — Fully contained Single ring	ν _μ MC 77.4 49.41	beam v _e 0.86 0.52	Data 57 34
— K2K-2 — Fully contained Single ring Shower-type ring	ν _μ MC 77.4 49.41 3.21	beam v _e 0.86 0.52 0.44	Data 57 34 5
— K2K-2 — Fully contained Single ring Shower-type ring Visible energy cut	$\begin{array}{c} \nu_{\mu} \ \text{MC} \\ 77.4 \\ 49.41 \\ 3.21 \\ 2.93 \end{array}$	beam v _e 0.86 0.52 0.44 0.44	Data 57 34 5 5
— K2K-2 — Fully contained Single ring Shower-type ring Visible energy cut No decay electron	$ v_{\mu} MC 77.4 49.41 3.21 2.93 2.17 $	beam v _e 0.86 0.52 0.44 0.44 0.39	Data 57 34 5 5 4

JULY 6. 2006

Signal selection eff: •47% for K2K-1 •55% for K2K-2

 v_{μ} BG rejection: •0.55% for K2K-1 •0.74% for K2K-2

#observed = $\underline{1}$ #expected B.G. = $\underline{1.70}$

Consistent w/ the BG expectation 17

Calculating upper limits

- Assume 2-flavor mixing: $P(v_{\mu} \rightarrow v_{e}) =$ $\sin^2 2\theta_{\mu e} \sin^2 (1.27 \Delta m^2 \frac{L}{F})$ for CC for NC
- Confidence interval with Poisson dist. using Nobe and

 v_e signal

 $N_{exp}(sin^2 2\theta_{ue}, \Delta m^2)$

 $= S_{v_{a}}(sin^{2}2\theta_{\mu e}, \Delta m^{2}) + B_{v_{a}}(sin^{2}2\theta_{\mu e}, \Delta m^{2}) + B_{v_{a}}$ v_{μ} -originated BG

beam- v_e BG

Syst. uncertainties are implemented in prob. densities. ($\sim \pm 30\%$)

> –Many virtual exp. with random syst. parameters

–Observe N_{obs} events in Poisson regime Confidence interval calc. with Feldman & Cousins method

Constraint in Δm^2 -sin²2 $\theta_{\mu e}$ space

 $N_{obs} = 1event$ $N_{exp}(no osc.) = 1.7events$

Constraint on oscillation parameters (90% C.L.): $sin^2 2\theta_{\mu e} < 0.13$ at $\Delta m^2 = 2.8 \times 10^{-3} \text{ eV}^2$

Constraint on the mixing parameter θ_{13}

$$\sin^2 2\theta_{\mu e} \approx \frac{1}{2} \sin^2 2\theta_{13}$$

- Comparison w/ reactor neutrino experiments:
 - sin²2θ₁₃<0.13 (CHOOZ)
 - $sin^2 2\theta_{13} < 0.20$ (Palo-Verde)
 - →Consistent results
- The most strict limit in v_e appearance mode
- The only result using a v_{μ} beam at Δm_{atm}^2 region

Future prospects

- The K2K sensitivity reaches $\sin^2 2\theta_{\mu e} = 0.1$ with 10 times stat. (90%CL, $\Delta m^2 = 2.8 \times 10^{-3} eV^2$)
- The projected sensitivity of T2K: sin²2θ_{μe}~O(10⁻³)
 - Intense neutrino beam
 - \rightarrow \times 50 statistics for 5 years
 - Narrow band, lower energy (<1GeV)
 - \rightarrow Suppress π^0 production
- Demonstrated the π^0 rejection as the pioneering work

Summary

- We have searched for $v_{\mu} \rightarrow v_{e}$ oscillation using the entire K2K data sample of 9.2×10^{19} POT.
- We have developed a new reconstruction algorithm for π^{0} 's.
 - Validated the performances with atmospheric neutrinos.
 - Achieved v_{μ} background rejection by 70%.
 - Pioneering works for the future long-baseline experiment.
 - \rightarrow Improved sensitivity for $\nu_{\mu} \rightarrow \nu_{e}$ oscillation
- New constraints on neutrino oscillation parameters
 - $sin^2 2θ_{μe}$ < 0.13 (90% C.L.) at Δm²=2.8×10⁻³ eV²
 - Most strict limit in ν_e appearance mode
 - sin²2θ₁₃ < 0.26 (90% C.L.) at Δm²=2.8×10⁻³ eV² in 3-flavor framework

• Consistent with the results from the reactor neutrino JULY 6, 200 experiments (C有均回左, 审定时, 你们的意思。