

T. Nakadaira (KEK) For T2K collaboration

Neutrino 2006 Talks on Oscillation exp.

```
K2K (1999 - 2005)
  "K2K Cross Section Measurements", R. Gran
T2K (2009 - )
  "T2K and beyond", T. Nakadaira
CNGS (2006 - )
  "CNGS", C. Sirignano
Nova (2010/2011? - )
  "Future Experiments (NOVA)", P. Shanahan
Other future experiments
  "Superbeams (physics and expts)", B. Marciano
  "Neutrino Factories & Beta Beams", L. Camillieri
• c.f.
  "Secondary Production (HARP, MIPP, E910)", G. Mills
```

K2K & T2K LBL v experiment

K2K Cross Section Measurements

Rik Gran U. Minnesota Duluth, U. Washington

For the K2K collaboration

NC single π⁰/(All CC) in 1KT Cherenkov detector
 CC-Coherent Pion Production in SciBar detector
 MA-QE from shape fit to SciFi detector data
 (4. Final results from mu-disappearance and e-appearance)

Motivations

K2K beam and near detectors

98% pure v_{μ} beam target materials: H₂O, HC, Fe

NC single π^0 in the water Cherenkov detector $v + N \rightarrow v + N + \pi^0$ Neutral Current (no muon), recoil proton below 1 GeV/c threshold (no proton)

150

with the right invariant mass

200

250

300

100

has two electron-like rings

After efficiency and background corrections Create ratio with single-ring muon-like events as the reference.

NC single π^0 fraction result ency ound signal in 25 ton fiducial volume ns (3.61±0.07 stat ±0.36 syst) x 10³

all muon-like in 25t fiducial volume $(5.65 \pm 0.03 \text{ stat} \pm 0.26 \text{ syst}) \times 104$

 $NC1\pi^{0}/\mu$ ratio at <Ev> ~ 1.3 GeV = 0.064 ± 0.001 stat ± 0.007 syst. (Prediction from our MC = 0.065)

Major sources of systematic error:DIS model dependence 5.6%NC/CC cross section 3.2%Ring counting 5.4%e-like ring particle ID 4.2%(In mu-like denominator only: vertex reconstruction 4%)

S. Nakayama, et al., Phys. Lett. B 619 (2005)

CC coherent pion selection

Several recent experiments see disagreement between data and expectation in very low Q² region.

Does CC coherent pion contribute to disagreement?

CC coherent pion results

M. Hasegawa, et al., Phys. Rev. Lett. 95 (2005)

Select the 113 events with $Q_{rec}^2 < 0.1$ (GeV/c)2

Coherent Pion content expected 21.1% efficiency 47.1% purity

Mesurement relative to all CC events $\frac{\sigma_{CCcoh\pi}}{\sigma_{All CC}} = (0.04 \pm 0.29 \text{ stat} +0.32 +0.35 \text{ syst}) \times 10^{-2}$

 $\begin{array}{ll} \text{Compute} & \frac{\sigma_{\text{CCcoh}\pi}}{\sigma_{\text{All CC}}} & < 0.60 \text{ x } 10^{-2} \text{ (at } 90\% \text{ CL)} \\ \text{This is ~30\% of Rein-Sehgal model} \end{array}$

Largest systematics: $\sigma_{\text{Resonant Pion}}$ and pion reinteractions in carbon

Axial mass and shape of Q² distribution

Reconstructed Q² for subsamples (after fitting)

Results for effective Quasi-elastic M_A on Oxygen $M_A = 1.20 \pm 0.12 \text{ GeV}$ ($\chi^2 = 261/235 \text{ dof}$) shape only

Can be compared with Deuterium bubble chamber results (primarily also shape fits) with older vector form factors K2K result $M_A = 1.23 \pm 0.12$ Deuterium $M_A \sim 1.03 \pm 0.03$

Most significant errors:		Our data has a
Muon momentum scale	0.07	flatter O ² spectrum
Relative flux and normalization	0.06	than MC prediction
MA 1π	0.03	
relative nonQE fraction	0.03	K2K default MC
Nuclear rescattering	0.03	uses M _A =1.1 GeV
Statistics only	0.03	alpole vector form factors

RG, Jeon, et al., submitted to PRD, hep-ex/0603034

Final neutrino oscillation results using the K2K data

• v_{μ} disappearance (hep-ex/0606032) HARP hadron measurements for new far/near extrapolation

Updated Super-Kamiokande reconstruction

 Electron neutrino appearance analysis now uses entire data set.
 → "K2Kにおける電子ニュートリノ出現の探索",山本真平 (Other smaller refinements) A Review of Secondary Production Measurements for v Flux Determination: E910, HARP, and MIPP

> Motivations Experiments Results & Implications Outlook

> > Geoffrey Mills Los Alamos National Laboratory

17 June, 2006

Geoffrey Mills

CERN/HARP Apparatus

400 M Triggers 1.5/3/5/8/8.9/12/12.9/15 GeV/c Beam H/D/Be/C/N/O/Al/Cu/Sn/Ta/Pb Targets (5%,100%) plus MiniBooNE and K2K runs

HARP Results: 12.9 GeV/c AI Thin Target Data

- •Directly applicable to K2K's results (See Richard Gran's talk)
- •K2K's oscillation result is mostly insensitive to this because they measure a *near/far ratio*

Nucl.Phys.B732:1-45,2006 hep-ex/0510039

K2K Near/Far Ratio

Near/far ratio errors are greatly reduced with the inclusion of Harp Data

17 June, 2006

Geoffrey Mills

Final v_{μ} disappearance result

Final v_{μ} disappearance result

T2K and beyond

T. Nakadaira (KEK) For T2K collaboration

Physics @ T2K PHASE-I

Principle of T2K ... Quite similar to K2K

∆m² = ~2.5x10⁻³[eV²], L=295km
 →1st Oscillation max. @ E_v ~ 0.6 GeV

•Use Sub-GeV v_{μ} beam

CC-QE is dominant process in v-N interactions.

Neutrino Energy reconstruction by CC-QE kinematics ... $\delta E/E \sim 10\%$

$$\begin{array}{c}
\begin{array}{c}
\nu \\ \hline \\
 neutron \\ \end{array} \\
\begin{array}{c}
\mu, e \\
\theta_l \\
\hline \\
 neutron \\ \end{array} \\
\begin{array}{c}
\mu, e \\
\theta_l \\
\hline \\
 proton \\ \end{array} \\
\begin{array}{c}
E_{\nu} = \frac{m_N E_l - m_l^2/2}{m_N - E_l + p_l \cos \theta_l} \\
\end{array}$$

Fraction of high energy v (E $v \sim$ a few GeV) is required to be small.

- CC-non QE events are background for E_{v} reconstruction.
- π^0 from NC events are dominant background for v_e signal.

Japan Proton Accelerator Research Complex

•400MeV LINAC (200MeV@T=0)

- \rightarrow 1MW 3GeV RCS
- → 0.75MW 50GeV MR (30GeV @ T=0)

1×10²¹ protons/year (130days) [in 50GeV operation.] c.f. K2K: ~1×10²⁰ POT(6 years including 1 year interruption)

Joint project by JAEA (former JAERI) and KEK

Accelerator construction status

Problem in RF system for MR:

Some of the RF cores discharges with 15kV/gap in long term tests.

 \leftarrow The failure components have already been identified.

* The MR commissioning will start with current RF system on schedule in low power.
* The parallel R&D work is in progress aiming to replacing RF system around 201026

v beam-line Construction is going well !

- Superconducting combined function magnet for Proton beam line.
 - First module of production version
 - Cool down test (4.6 K)
 - Excited to 7728A (50GeV operation+5% margin.) w/o quench.

- Mechanical Prototype of Graphite Target
 - Enough thermal shock resistance against 0.75MW beam.
 - He-gas cooling system is constructed.

- Prototype of 1st Horn
 - Test operation with 250kA current

So far, There is no problem up with this test.

J-PARC schedule & Beam Power estimation

Target date for new RF system installation.28

v Near Detector @ 280m

On-axis detector

Measure v-beam profile

 \rightarrow v-beam direction at 1mrad precision.

iron - scintillator stacks × 14 units

Off-axis detector: In Magnet (*B=0.2T*)
 Measure ν-flux in SK direction : Φ_νND(E_ν).

- Measure v_{μ} , \overline{v}_{μ} and v_e + \overline{v}_e fluxes separately.
- Neutrino Energy ← CC-QE kinematics.

Cross sections of v interactions

- CC-1 π /CC-QE ... BG for E_v reconstruction
- NC- π^0 production ... BG for v_e detection

Far Detector: SK-III

•50kt Water Cherenkov detector Ready for T2K !!! SK reconstruction is completed in Apr. 2006. → Back to 40% Photo coverage. Start full operation in July, 2006 ©ICRR, Univ. of Tokyo 30

Prospects in T2K Phase-I

 \mathbf{v}_{e} appearance

T2K 90%CL sensitivity

+ Syst. error for BG subtraction (10%) 31

Prospects for T2K Phase-I (Cont'd)

Intermediate detector @ 2km

• E_{v} spectrum @ 2km

~ E_v spectrum @ SK w/o oscillation

- \rightarrow Uncertainties from Far/Near ratio is smaller than ND@280m.
- Possible Detector configuration
 - Liquid Ar TPC
 - Water Cherenkov
 - Same target & v reconstruction algorithm as SK
 - Muon Range Detector

Facilities for 2km is to be requested in Japan after the commissioning of J-PARC facilities.

Beyond T2K-I

Possible upgrade: T2K Phase-II

- If sin²20₁₃ measured @ T2K-I > 0.01, it paves the way for v CP-violation search.
 - J-PARC upgrade: $0.75MW \rightarrow 4MW$
 - SK (50kt) → Hyper Kamiokande (HK): ~1Mt
 - Proton decay search: test of GUT.
- Comparison between v_{μ} and Anti- v_{μ} beam.

Assumptions: $\Delta m_{21}^2 = 6.9 \times 10^{-5} eV^2$ $\Delta m_{32}^2 = 2.8 \times 10^{-3} eV^2$ $\theta_{12} = 0.594, \theta_{23} = \pi/4$

T2KK ... Another far detector @ Korea

Far detector identical with (SK)/HK @ 2nd Oscillation Maximum point.

Contribution of CP asymmetric term: ×3 compared to SK position.

■Matter effect become significant. \rightarrow Possibility to resolve mass hierarchy

Status and Prospects of the NOvA Experiment

Peter Shanahan - Fermilab Neutrino 2006 June 17, 2006 - Santa Fe For the Collaboration

Introduction

- NOvA: NuMI Off-Axis v_e Appearance
- Study $\nu_{\mu} \rightarrow \nu_{e}$:
 - search for $\sin^2(2\theta_{13})$ with a sensitivity a factor of ~14 beyond current limits
 - sensitivity to Mass Hierarchy for a significant fraction of parameters,
 - search for effect of CP violating phase δ
- Two detectors with a 810 km baseline using the NuMI Neutrino Beam from Fermilab
- Near and Far Detectors optimized for v_e charged-current detection
- Located Off the Beam Axis for Background Suppression

Location

- Optimization: Maximize sensitivity to Mass Hierarchy
 - Maximize baseline within U.S.
 810 km from Fermilab
 - Optimize off-axis location: 12 km from beam axis
 - Ash River, MN

Far Detector: 25kT [15.7×15.7 × 110 m³] (18.25kT Liquid Scintillator in PVC cells+WLS+APD) Near Detector:

Liquid Scintillator + Muon Catcher (OA 4 – 21 mrad)

History/Schedule

- April 2005: Fermilab PAC approval
- April 2006: DOE CD-1 recommendation
 - "Approve Preliminary Baseline Range"
 - Conceptual Design Report
- Upcoming Reviews:
 - Late 2006/Early 2007: Review for CD-2 ("Approve Performance baseline")/ Technical Design Report
 - by Oct 2007: Reviews for CD-3 ("Approve start of construction")
- Detector construction and running
 - Start Far Detector Assembly in late 2009- start data taking with first 5 kT in late 2010 complete in late 2011

Solution 3σ Sensitivity to sin²(2θ₁₃) \neq 0

- Advantage to equal v/\overline{v} running:
 - More consistent reach in $\sin^2(2\theta_{13})$ vs. δ and mass hierarchy

NOvA - Neutrino 2006

 6×10^{21} POT: 6year, 25kT, 1MW beam

Santa Fe, June 17, 2006

Mass Hierarchy

Effect at a fixed L/E is proportional to baseline: unique reach for NOvA

95% CL Resolution of the Mass Hierarchy

P. Shanahan - Fermilab

Santa Fe, June 17, 2006

The CNGS project and OPERA experiment at LNGS

Chiara Sirignano (Salerno University)

for the OPERA Collaboration

Neutrino 2006

Santa Fe, June 13-19⁴³2006

Oscillation Project with Emulsion tRacking Apparatus

International Collaboration (Europe + Japan)

- Long baseline experiment
- CNGS pure v_{μ} beam, <L> = 732 km, <E> = 17 GeV
- Appearance signal $\nu_{_{\rm H}}$ \rightarrow $\nu_{_{\rm T}}$ (by product $\nu_{_{\rm H}}$ \rightarrow $\nu_{_{\rm e}}$)
- Hybrid setup (Nuclear Emulsions + electronics)
- Atmospheric neutrino data allowed region oscillation search

$\nu_{\!_{\mu}} \rightarrow \nu_{\!_{\tau}}\, \text{oscillation}$ search

τ decay channel	Sig	Pookaround	
	$\Delta m^2 = 2.4 \times 10^{-3} eV^2$	∆m² = 3.0 x 10 ⁻³ eV²	Баскугоцпо
$\tau \rightarrow \mu$	3.6	5.6	0.23
$\tau \rightarrow \mathbf{e}$	4.3	6.7	0.23
$\tau \rightarrow h$	3.8	5.9	0.32
$\tau \rightarrow 3h$	1.1	1.7	0.22
ALL	12.8	19.9	1.0

full mixing, 5 years run @ 4.5x10¹⁹ pot / year

Main background sources:

- -charm production and decays
- hadron re-interactions in lead
- large-angle muon scattering in lead

Hadron stop

Hadron stopper and decay tube installed (June '04)

Target section completed (commissioning July '06)

2006 Revised Accelerator Schedule

Approved by Research Board 7th June 2006

6/8/06

Detector construction status

