大気ニュートリノ

内容

- 大気ニュートリノについて
- SKにおける大気ニュートリノの結果
 - 1.2 flavor analysis (太陽効果を含む)
 - 2. L/E analysis
 - 3. τ appearance
- Neutrino 2006 presentation
 - 1. MINOS
 - 2. SNO
- summary

大気に降り注ぐ宇宙線(主に陽子)が大気と衝突してニュートリノを生成する。 それを検出器で捕まえる

天頂角分布

大気ニュートリノの天頂角分布はエネルギーの高いところ(数GeV以上)で上下対称になることが期待される(ニュートリノ振動が無い場合)

Data set

- Super-K I+II(全データ) SK-I (1489days) + SK-II (804days)
- MINOS

418 live days (contained vertex events) 842 live days (v induced μ events)

SNO

149 days exposure

Super-Kamiokande

11146	Num. of inner detector PMTs	5182
40 %	Photocathod coverage	19 %

SK-III physics run will start in July 2006.

観測される大気ニュートリノ事象

Since various detector related systematic errors are different, we do not combine the SK-I and SK-II bins.

380 bins for SK-I + 380 bins for SK-II \rightarrow 760 bins in total

SK-I + SK-II combined analysis (systematic errors)

neutrino flux (14)

neutrino interaction (12)

solar activity (1)

event selection and reconstruction (21) Identical for SK-I and SK-II

Regarded as independent between SK-I and SK-II

The total number of systematic errors is :

Flux (14) + Interaction (12) + SK-I (22) + SK-II (22) = 70

2 flavor analysis Zenith Angle Distributions (SK-I + SK-II)

SK-I + SK-II

--- $v_{\mu}-v_{\tau}$ oscillation (best fit) SK-I + SK-I- null oscillation SK-I + SK-II

Result from SK-I + SK-II data

太陽効果 $v_{\mu} \rightarrow v_{e}$ Oscillation effects

O. L. G. Peres and A. Yu. Smirnov, hep-ph/0309312

 P_2 : 2v transition prob. $v_e → v_{\mu, \tau}$ in matter driven by Δm_{12}^2

$$P(v_e \rightarrow v_e) = 1 - P_2$$

$$P(v_e \rightarrow v_\mu) = P(v_\mu \rightarrow v_e) = \cos^2 \theta_{23} P_2$$

$$P(v_e \rightarrow v_\tau) = P(v_\tau \rightarrow v_e) = \sin^2 \theta_{23} P_2$$

 v_e decrease rate by v_e oscillation : $1 - P(v_e \rightarrow v_e) = P_2$ v_e increase rate by v_μ oscillation : $r P(v_\mu \rightarrow v_e) = r \cos^2 \theta_{23} P_2$

r = $\Phi^0(v_{\mu}) / \Phi^0(v_e) \sim 2$ (for low energy v)

 $\begin{array}{ll} \mbox{if } \cos^2\theta_{23} = 0.5 & (\sin^2\theta_{23} = 0.5) & v_e \mbox{ increase } \sim v_e \mbox{ decrease } \\ \mbox{if } \cos^2\theta_{23} > 0.5 & (\sin^2\theta_{23} < 0.5) & v_e \mbox{ increase } > v_e \mbox{ decrease } \\ \mbox{if } \cos^2\theta_{23} < 0.5 & (\sin^2\theta_{23} > 0.5) & v_e \mbox{ increase } < v_e \mbox{ decrease } \end{array}$

Solar term effect to atmospheric neutrinos

Result of $\sin^2 \theta_{23}$ determination (SK-I+II combined)

 $\chi^2 - \chi^2_{min}$ distribution as a function of sin² θ_{23} where the other oscillation parameters are chosen to minimize χ^2 χ^2_{sol} from Solar-v+KamLAND results are added in each (Δm^2_{12} , sin² θ_{12}) point.

L/E analysis

Survive probability

- **Neutrino oscillation :**
- **Neutrino decay:**

Neutrino decoherence :

$$\begin{aligned} \mathsf{P}_{\mu\mu} &= 1 - \sin^2 2\theta \sin^2 (1.27 \, \frac{\Delta m^2 \mathsf{L}}{\mathsf{E}}) \\ \mathsf{P}_{\mu\mu} &= (\cos^2 \theta + \sin^2 \theta \, \mathsf{x} \, \exp(-\frac{m}{2\tau} \frac{\mathsf{L}}{\mathsf{E}}))^2 \\ \mathsf{P}_{\mu\mu} &= 1 - \frac{1}{2} \sin^2 2\theta \, \mathsf{x} \, (1 - \exp(-\gamma_0 \frac{\mathsf{L}}{\mathsf{E}})) \end{aligned}$$

The first dip can be observed

Tests for neutrino decay & decoherence

Best fit parameters $\Delta m^2 = 2.3 \times 10^{-3}$, $\sin^2 2\theta = 1.00$ $\chi^2_{min} = 83.9/83$ d.o.f ($\sin^2 2\theta = 1.03$, $\chi^2_{min} = 83.4/83$ d.o.f)

 $\begin{array}{ll} \textbf{2.0x10^{-3} < } \Delta m^2 < \textbf{2.8x10^{-3} eV^2} \\ \textbf{0.93 < sin^2 2\theta} & \text{at 90\% C.L.} \end{array}$

Oscillation $\chi^2_{osc} = 83.9/83 \text{ d.o.f}$ SK-IDecay $\chi^2_{dcy} = 107.1/83 \text{ d.o.f}, \Delta\chi^2 = 23.2(4.8 \sigma)$ 3.4 σ Decoherence $\chi^2_{dec} = 112.5/83 \text{ d.o.f}, \Delta\chi^2 = 27.6(5.3 \sigma)$ 3.8 σ

v_{τ} appearance

$$v_{\mu} \rightarrow v_{\tau}$$
 振動

τ neutrino event selection criteria:

- (1) Fiducial Volume: 2m from the ID PMTs (FC events)
- (2) Visible Energy (Evis) > 1.33 GeV (Multi-GeV events)
- (3) Most energetic ring is electron-like. (Showering events) Approximately 90% of the backgrounds are rejected.

Likelihood or Neural Network analysis

These two statistical methods are employed independently.

v_{τ} appearance

- Likelihood analysis:
 - Total τ excess: 138 ± 48(stat.) + (+14.8/-31.6)(sys.) (2.4 sigma)
 - Expected τ excess: 78.4 ± 26(sys.)
- Neural Net analysis:
 - Total $\tau_{\rm excess}$: 134 ± 48(stat.) + (+16.0/-27.2)(sys.) (2.4sigma)
 - Expected τ excess: 78.4 ± 27(sys.)

MINOS&SNO@Neutrino 2006

MINOS

OFERMILAB #98-1321D

Veto shield

Classes of atmospheric v events

Santa Fe

Contained Vertex Analysis

- 107 data events compared with 127±13 expected for no oscillations
- Event direction measured by timing
- 77 events with a well measured direction, 49 downward going, 28 upward going
 R^{data}_{up/down} /R^{MC}_{up/down} = 0.62 ^{+0.19}_{-0.14} (stat.) ±0.02(sys.)
- An extended maximum likelihood analysis with Feldman-Cousins style error analysis yields the above allowed regions

Neutrino induced μ Analysis

- Soudan overburden is flat
- Horizontal cosmic ray μ have to traverse a large column of rock and are absorbed.
- Cut at a zenith angle of 0.05
- 10 extra neutrino induced μ not selected by the timing cut

• Upward going μ are produced by ν interactions in the surrounding rock

- μ direction determined by timing
- Single hit timing resolution 2.3 ns
- 131 upward going μ selected

Combined Charge Analysis

Oscillation analysis

- Oscillation fit to the momentum separated zenith angle distribution
- Five systematic errors included as nuisance parameters in the fit
 - Reconstruction
 - Cross sections
- Oscillation analysis, best fit point
 - $\Delta m^2 = 7.9 \times 10^{-4} \text{ eV}^2$
 - $\sin^2 2\theta = 1.0$
 - χ²/ndf=5.7/7
- No oscillations excluded at the 87% confidence level

Charge Separated Analysis

SNO

2094 m under ground

SNO Atmospheric ν

- SNO is a very deep experiment
- Cosmic μ are absorbed a long way above the horizontal
- Neutrino induced μ from the surrounding rock are visible well above the horizon
- See the transition region where the oscillation dip is maximal
- Data from the first 149 days exposure is available
- Remaining data is still in a blinded analysis

summary

- ・ 全ての大気ニュートリノデータで2世代振動 $(v_{\mu} \rightarrow v_{\tau})$ に矛盾がない。
- SK:@90C.L. $1.9 \times 10^{-3} \text{ eV}^2 < \Delta \text{m}^2 < 3.1 \times 10^{-3} \text{ eV}^2$ $\sin^2 2\theta > 0.93$
- 太陽効果(v_µ → v_e 振動)の有意な結果
 は見えていない。