第18回宇宙ニュートリノ研究会

カムランドにおける地球ニュー トリノの観測と今後の見通し

(Geoneutrino detection in KamLAND and future Prospect)

October 11, 2005 Itaru Shimizu Tohoku University

概要

1. ニュートリノと地球物理 ● ニュートリノ伝搬理論 ● 地球ニュートリノフラックス予測

2. 地球ニュートリノ観測

- 検出器キャリブレーション
- バックグラウンドイベントの見積り
- 観測結果

3. 将来の見通し

- 液体シンチレータ純化
- 有効体積拡大とCombined解析

ニュートリノと地球物理

ニュートリノによる天体観測

地球内部のU/Th系列の崩壊に伴って 放出される電子型反ニュートリノを検出

太陽ニュートリノ問題

Homestake

予測する数よりもずっと少ない e[−]↓ ニュートリノの伝搬の理論に問題?

露出時間500日

本当の太陽の大きさ

太陽ニュートリノ観測

カミオカンデ $\nu_e +$ $\nu_e +$

ニュートリノ振動

ニュートリノ振動実験

 $V_e \longrightarrow V_x$ Homestake, SAGE, GALLEX, GNO, SNO, Super-Kamiokande

 $\nu_{\mu}(\bar{\nu}_{\mu}) \longrightarrow \nu_{x}(\bar{\nu}_{x})$ • 大気ニュートリノ

Kamiokande, IMB, Super-Kamiokande, Soudan2 ...

自然のニュートリノ

太陽ニュートリノ

K2K, LSND, KARMEN, MiniBooNE ...

Bugey, CHOOZ, Palo Verde, KamLAND ...

K2KとKamLANDでニュートリノの消失を観測

ニュートリノ振動を見るのに適している

各太陽ニュートリノ実験を説明できる振動パラメータ

Eprompt > 2.6 MeV で原子炉ニュートリノ振動解析

L/E プロット

ニュートリノ振動が起きている強い証拠

ニュートリノ振動解析

太陽ニュートリノ実験 + KamLAND

LMA II, LMA 0をそれぞれ> 3σ, > 4σの信頼度で排除

地球ニュートリノフラックス予測

地球ニュートリノ検出によって放射化熱を直接テストできる

表層のU/Th分布が深さ5kmまで続いていると仮定 ↓ 周辺地質の影響は全フラックスに対して3%程度

地球ニュートリノ観測

KamLAND検出器

Kamioka Liquid Scintillator Anti-Neutrino Detector

イベント選定条件

Systematic error	Error (%)	
cross section	0.2	
livetime	0.06	
fiducial volume	4.91	
spactial cut efficiency	1.0	
timing cut efficiency	0.3	
total	5.0	

effective charge

エネルギーの位置依存

地球ニュートリノ検出のバックグラウンド

Background source	Number
Reactor neutrino	
short-lived isotopes long-lived isotopes	<mark>80.4 ± 7.2</mark> 1.9 ± 0.2
Cosmic muon induced	
neutrons fast-neutrons spallation products (⁹ Li)	negligible < 0.1 0.30 ± 0.05
LS Radioactivity accidental cascade decays spontaneous fissions (α, n) reactions (γ, n) reactions	2.38 ± 0.01 negligible < 0.1 42.4 ± 11.1 negligible
total	127.4 ± 13.3

長寿命核からの寄与

• ¹⁰⁶**Ru** (T_{1/2} = 374 days) \rightarrow ¹⁰⁶**Rh**(T_{1/2} = 29.8s) \rightarrow ¹⁰⁶**Pd** (E_{max} = 3.54 MeV) • ¹⁴⁴**Ce** (T_{1/2} = 285 days) \rightarrow ¹⁴⁴**Pr**(T_{1/2} = 17.2min) \rightarrow ¹⁴⁴**Nd** (E_{max} = 3.0 MeV) • ⁹⁰**Sr** (T_{1/2} = 28.8 years) \rightarrow ⁹⁰**Y**(T_{1/2} = 64.1s) \rightarrow ⁹⁰**Zr** (E_{max} = 2.28 MeV)

崩壊数は過去の原子炉のデータを用いて計算

(α, n) バックグラウンド

²¹⁰Poのα崩壊

(α, n) エネルギースペクトル

α spectrum

$$\frac{dN}{dE_{\alpha}} = n_{target} I_{source} \int \sigma(E_{\alpha}) \frac{dX}{dE_{\alpha}}$$

n angular distribution

$$\frac{d\sigma}{d\Omega} = \sum_{\nu} A_{\nu} P_{\nu}(\cos\theta)$$

n spectrum

 $\begin{array}{ll}n_{target} & : \text{ number of target} \\ I_{source} & : \text{ source intensity} \\ \sigma(E_{\alpha}) & : (\alpha, n) \text{ cross section} \\ \frac{dX}{dE_{\alpha}} & : \text{ stopping power} \\ A_{\nu} & : \text{ coefficients of Legendre Polynomial} \end{array}$

 $P_{\nu}(\cos \theta)$: Legendre Polynomial

最近の測定では4%の精度を達成

749.1 days 408.5 ton (R = 5 m) 68.7%

イベント選定条件 $0.9 < E_{prompt} < 2.6 MeV$ $1.8 < E_{delayed} < 2.6 MeV$ $0.5 < \Delta T < 500 \mu sec$ $\Delta R < 1.0 m$ $R_{prompt} < 5.0 m$ $R_{delayed} < 5.0 m$

U/Thから16TWの寄与を仮定

地球二	ニュートリ	ノ観測]の結果
バックグラウント	 reactor ¹³C(α,n) accidental long-lived ⁹Li 	80.4 ± 7.2 42 ± 11 2.38 ± 0.01 1.9 ± 0.2 0.30 ± 0.05	<pre> } dominant B.G. 24% scaling error (cross section, α rate) 10% quenching error</pre>
	total 観測イベント数 バックグラウン 系統誤差	127±13 152 ド予測数 12 5.0	2 25 event excess ! 7 ± 13
Rate Analysis 有意性			91.4%
地球ニュート	<u>、リノフラックス</u>	ζ	50.6 ^{+39.4} -36.4 TNU
フラックスの	D上限值 (99%信	<u>頼度)</u>	148.2 TNU
TNUL (Torre	octrial Nautrina Llait) — (α	nroton/voor

TNU (Terrestrial Neutrino Unit) = events/10³² target-proton/year

rate analysisの結果(25⁺¹⁹ event)と一致

将来の見通し

KamLANDにおける地球ニュートリノ観測の改善

原子炉ニュートリノ観測におけるS/N

原子炉ニュートリノ観測におけるS/N

- 液体シンチレータの純化によってバックグラウンドを削減 - 有効体積の拡大で統計量を増やす

Combined (geo + reactor) 解析

Combined (geo + reactor) 解析

液体シンチレータの純化

純化後の地球ニュートリノ測定

さらに将来… (ガドリニウム or ボロン含有液体シンチレータ) 後発中性子の角度依存性を利用した地球ニュートリノの方向測定

まとめ

- ニュートリノ振動パラメータの精密測定により、ニュー
 トリノのプローブとしての利用が可能になった。
- 1,000トンの液体シンチレータを用いた実験で、実際に
 地球ニュートリノを観測した。
 - 有意性: 91.4%
 - データはBSEモデルに基づいた予測値と誤差の範囲で一致 - 地球参照モデルの3.8倍のフラックスは99%の信頼度で排除
- 液体シンチレータの純化によってバックグラウンドを減らし、有効体積の拡大することで、より高い精度での地球ニュートリノの測定を行う予定である。