

Shiozawa, Feb.-2003 @ NOON2003

Super-K nucleon decay search summary

Summary of Nucleon Decay Searches

mode	exposure (kt∙ yr)	ε Β _m (%)	observed event	B.G.	τ/B limit (10 ³² yrs)
$\mathbf{p} \rightarrow \mathbf{e}^{\dagger} + \pi^{0}$	92	40	ο	0.2	54
$\mathbf{p} \rightarrow \mathbf{u}^+ + \pi^0$	92	32	õ	0.2	43
$\mathbf{p} \rightarrow \mathbf{e}^{\dagger} + \mathbf{n}$	92	17	õ	0.2	23
$\mathbf{p} \rightarrow \mathbf{c} + \mathbf{q}$	02		õ	0.2	12
$\mathbf{P} \rightarrow \underline{\mu} + \mathbf{\eta}$	32	21	5	0.2	5.6
$\mathbf{n} \rightarrow \mathbf{v} + \mathbf{\eta}$	45	21	5	9	5.0
$\mathbf{p} \rightarrow \mathbf{e}_{+} + \mathbf{p}$	92	4.2	0	0.4	5.6
$\mathbf{p} \rightarrow \mathbf{e}^{\cdot} + \mathbf{\omega}$	92	2.9	0	0.5	3.8
$\mathbf{p} \rightarrow \mathbf{e^+} + \gamma$	92	73	ο	0.1	98
$\mathbf{p} \rightarrow \mathbf{u}^+ + \mathbf{v}$	92	61	0	0.2	82
$\mathbf{p} \rightarrow \overline{\mathbf{v}} + \mathbf{K}^{+}$	92				22
	+	8.6	0	0.7	11
$K^+ \rightarrow \pi^+ \pi^0$	μ	6.0	ő	0.6	7.9
$\mathbf{p} \rightarrow \mathbf{\overline{v}} + \mathbf{k}^0$	92	0.0	•	0.0	2.0
$\kappa^0 \rightarrow \pi^0 \pi^0$	32	6.9	14	19.2	3.0
$\mathbf{K}^{0} \rightarrow \pi^{+} \pi^{-}$		5.5	20	11.2	0.8
$p \rightarrow e^+ + K^0$	92				10.7
$K^0 \rightarrow \pi^0 \pi^0$		9.2	1	1.1	8.7
$K^{0} \rightarrow \pi^{+}\pi^{-}$					
2-ring		7.9	5	3.6	4.0
3-ring		1.3	0	0.1	1.7
$\mathbf{p} \rightarrow \mu^+ + \mathbf{K}^0$	92				13.9
$\mathbf{K}^{0} \rightarrow \pi^{0} \pi^{0}$		5.4	0	0.4	7.1
$\mathbf{K}^{0} \rightarrow \pi^{+}\pi^{-}$			_		
2-ring		7.0	3	3.2	4.9
3-ring		2.8	U	0.3	3.7
		10)		

More than 100 soft parameters into the SM.

They induce FCNCs and CP that are extremely suppressed in the SM.

$$\mu \to e + \gamma , \quad b \to s + \gamma ,$$

 ΔM_K , ΔM_B , ϵ_K , ϵ'/ϵ , and EDMs.

A parametrization of FCNCs and *SP* in the superCKM basis:

$$\Delta_{LL,RR}^{a} = U_{aL,R}^{\dagger} \,\tilde{\mathbf{m}}_{aLL,RR}^{2} \,U_{aL,R} \text{ and } \Delta_{LR}^{a} = U_{aL}^{\dagger} \,\tilde{\mathbf{m}}_{aLR}^{2} \,U_{aR}$$
$$\delta_{LL,RR,LR}^{a} = \Delta_{LL,RR,LR}^{a}/m_{\tilde{a}}^{2} \quad (a = \ell, q)$$

17

(Gbbiani et al, Abel, Khalil and Lebedev, Endo, Kakizaki and Yamaguchi, Hisano and Shimizu)

	F	bound	t l			Exp. bour	ıd
		$\frac{105}{2}$	ļ [$\sqrt{ \mathrm{Re}(\delta_{12}^d)_{LL}^2 }$	RR	4.0×10^{-2}	$\tilde{m}_{\tilde{a}}$
$ (\delta_{12}^t)_{LL} $	$4.0 \times$	$10^{-3} m_{\tilde{l}}^2$	-	$\frac{\sqrt{ \mathbf{B}_0(\delta^d) }}{\sqrt{ \mathbf{B}_0(\delta^d) }}$	$\frac{l}{l}$	2.8×10^{-3}	$\frac{1}{\tilde{m}_{z}}$
$\mid (\delta_{12}^l)_{RR} \mid$	$9 \times$	$10^{-4} \ ilde{m}_{ ilde{l}}^2$		$\frac{\sqrt{100(0_{12})LL(0_1)}}{\sqrt{100(0_{12})LL(0_1)}}$	(2)RR		$\frac{m_q}{2}$
$ (\delta_{13}^l)_{LL} $	$2 \times$	$10^{-2} \ \tilde{m}_{\tilde{i}}^2$		$\sqrt{ \mathrm{Re}(\delta_{12}^d)_{LR}^2 }$		4.4×10^{-3}	$\tilde{m}_{\tilde{q}}$
$\frac{ (\delta_{23}^l)_{LL} }{ (\delta_{23}^l)_{LL} }$	$2 \times 10^{-2} \tilde{m}_{\tilde{i}}^2$		$\sqrt{ \mathrm{Re}(\delta_{13}^d)_{LL}(\delta_{13}^d)_{RR} }$		1.8×10^{-2}	$ ilde{m}_{ ilde{q}}$	
$ (\delta_{12}^l)_{LR} $	$8.4 \times$	$10^{-7} \ \tilde{m}_{\tilde{l}}^2$		$\sqrt{ \mathrm{Re}(\delta_{13}^d)_{L_{\star}}^2}$	R	3.3×10^{-3}	$\tilde{m}_{\tilde{q}}$
$ (\delta_{13}^l)_{LR} $	$1.7 \times$	$10^{-2} \ \tilde{m}_{\tilde{l}}^2$		$\sqrt{ \mathrm{Re}(\delta_{12}^u)_{LL}(\delta_{12}^u) }$	$\binom{\iota}{2}_{RR}$	1.7×10^{-2}	$ ilde{m}_{ ilde{q}}$
$ (\delta_{23}^l)_{LR} $	$1 \times$	$10^{-2} \ \tilde{m}_{\tilde{l}}^2$		$\sqrt{ \mathrm{Re}(\delta_{12}^u)_L^2 }$	$\overline{R }$	3.1×10^{-3}	$\overline{\tilde{m}_{\tilde{q}}}$
				$ (\delta^d_{23})_{LR} $		1.6×10^{-2}	$\overline{ ilde{m}_{ ilde{q}}^2}$
		Exp. bo	ound		Exp	b. bound	
$ \text{Im}(\delta_{12}^d)_{LL,RR} $ $4.8 \times 10^{-1} \ \tilde{m}_{\tilde{q}}^2$		$ \text{Im}(\delta_{12}^d)_{LR} $ $2.0 \times 10^{-5} \tilde{m}_{\tilde{q}}^2$					
$ \operatorname{Im}(\delta^d_{11}) $	$)_{LR} $	6.7×10^{-1}	$^{-8}$ $\tilde{m}_{ ilde{q}}^{ ilde{2}}$	$ \operatorname{Im}(\delta_{11}^u)_{LR} $	$6.7 \times$	$< 10^{-8} \ \tilde{m}_{\tilde{q}}^2$	
$ \operatorname{Im}(\delta_{11}^{\ell}) $	$)_{LR}$	3.7×10^{-1}	$^{-8} \ ilde{m}_{ ilde{\ell}}^2$				

 $\tilde{m}_{\tilde{l}} = m_{\tilde{l}}/100 \,\, {
m GeV}, \, \tilde{m}_{\tilde{q}} = m_{\tilde{q}}/500 \,\, {
m GeV}$

We use "Low-energy discrete Flavor Symmetry" to constrain the Yukawa sector, and simultaneously to soften the SUSY flavor problem. No hidden sector scenario Testable predictions

II. Dihedral Symmetry

(平面対称性)

The classification of the finite groups has been. completed 1981 (Gorenstein); about <u>100 years</u> later than the case of the continues group.

g= order of a finite group = # of the group elements

g	
6	$D_3 \equiv S_3$
8	$D_4, Q = Q_4$
10	D_5
12	D_6, Q_6, T
14	D7
16	$D_8, Q_8, Z_2 \times D_4, Z_2 \times Q$
18	$D_9, Z_3 \times D_3$
20	D_{10}, Q_{10}
22	D ₁₁
24	$D_{12}, Q_{12}, Z_2 \times D_6, Z_2 \times Q_6, Z_2 \times T,$
	$Z_3 \times D_4, Z_3 \times Q, Z_4 \times D_3, S_4$
26	D ₁₃
28	D_{14}, Q_{14}
30	$D_{15}, D_5 \times Z_3, D_3 \times Z_5$

Classification_ of Finite Groups

(Frampton and Kephart, '01)

Twisted products $([Z_M, Z_N] \neq 0)$

g	
16	$Z_2 \tilde{\times} Z_8$ (two, excluding $D_8), Z_4 \tilde{\times} Z_4, Z_2 \tilde{\times} (Z_2 \times Z_4)$ (two)
18	$Z_2 \tilde{\times} (Z_3 \times Z_3)$
20	$Z_4 \tilde{\times} Z_5$
21	$Z_3 \tilde{\times} Z_7$
24	$Z_3 \tilde{\times} Q, Z_3 \tilde{\times} Z_8, Z_3 \tilde{\times} D_4$
27	$Z_9 \tilde{\times} Z_3, Z_3 \tilde{\times} (Z_3 \times Z_3)$

Literature on Finite Groups: Landau and Lifschitz," Quantum mechanics"

$$\mathcal{G}_{D_N} = \{\tilde{R}_N, (\tilde{R}_N)^2, \dots, (\tilde{R}_N)^N = \mathbf{1}, \\ \tilde{R}_N \tilde{P}_D, (\tilde{R}_N)^2 \tilde{P}_D, \dots, (\tilde{R}_N)^N \tilde{P}_D = \tilde{P}_D \} \\ = \{2\pi/N, 4\pi/N, \dots, 2\pi, 2 \\ \pi/N \text{ with } \tilde{P}_D, 4\pi/N \text{ with } \tilde{P}_D, \dots, \tilde{P}_D \} \text{rotations}$$

$$Two-dimensional representations of R and P$$

$$D_N \quad (\theta_N = 2\pi/N)$$

$$\tilde{R}_N = \begin{pmatrix} \cos \theta_N & \sin \theta_N \\ -\sin \theta_N & \cos \theta_N \end{pmatrix}, \quad \tilde{P}_D = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

$$\tilde{R}_N \rightarrow \begin{pmatrix} \cos \theta_N & \sin \theta_N & 0 \\ -\sin \theta_N & \cos \theta_N & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad \tilde{P}_D \rightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

$$\det \tilde{R}_N = \det \tilde{P}_D \rightarrow 1 \implies D_N \subset S0(3)$$

$$Q_{2N} \quad (\theta_N = 2\pi/N)$$

$$\tilde{R}_{2N} = \begin{pmatrix} \cos \frac{\theta_N}{2} & \sin \frac{\theta_N}{2} \\ -\sin \frac{\theta_N}{2} & \cos \frac{\theta_N}{2} \end{pmatrix}, \quad \tilde{P}_Q = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}$$

$$\det \tilde{R}_{2N} = \det \tilde{P}_Q = 1 \implies Q_{2N} \subset SU(2)$$

$$Q_{2N} \quad contains \ real \ as \ well \ as \ complex \ irreps.$$

5. Tensor Products (26)

$$2_{1} \times 2_{2} = 1_{-,3} + 1_{-,1} + 2_{1}$$

$$\begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} \times \begin{pmatrix} a_{1} \\ a_{2} \end{pmatrix} = (x_{1}a_{2} + x_{2}a_{1}) \quad (x_{1}a_{1} - x_{2}a_{2}) \quad \begin{pmatrix} x_{1}a_{1} + x_{2}a_{2} \\ x_{1}a_{2} - x_{2}a_{1} \end{pmatrix}$$
And so on.

A possible origin. of the dihedral symmetry 33

Dihedral Transformation_

$$\phi'(x,y) = \tilde{Q}_{2N} \phi(x, \tilde{D}_N^{-1}y), \ \tilde{Q}_{2N} \in Q_{2N}, \ \tilde{D}_N \in D_N$$

Orbifold B.C.s break Dihedral Invariance. But the Q_2N as a global, internal symmetry is intact.

$$\phi(x,y) \to \phi'(x,y) = \tilde{Q}_{2N} \ \phi(x,y), \ \tilde{Q}_{2N} \in Q_{2N}$$

35

	AA	S3	D_4	21	26	D7
	Babu et al	Kubo et al	Grimus +Lavoura	Frigerio et al	Babu+Kubo	Chen +Ma
Lepton	$\theta_{23} = \pi/4$ $m_0 > 0.3 \text{ eV}$	$\theta_{23} \simeq \pi/4$ $\sin \theta_{13} = 0.034$	$\theta_{23} = \pi/4$ $\theta_{13} = 0$	$\theta_{23} = \pi/4(?)$ $\theta_{13} = 0(?)$) later	\bigtriangleup
Quark	\bigtriangleup	0	\bigtriangleup	\bigtriangleup	later	$\sin 2\beta \simeq 0.733$
nonSUSY	X	0	0	0	?	0
SUSY	0	0	?	?	0	?
SUSY Flavor	X	O Kobayashi,	X	X	0	x?
		Terao+jk				

	A4 Babu et al	S3 Kubo et al	D4 Grimus +Lavoura	Q4 Frigerio et al	Q6 Babu+Kubo	D7 Chen +Ma
Anomalies	?	0	?	?	0	?
FCNC by Higgses	X	X	0	X	X	X
Leptogenesis	?	O Araki,jk+Paschos	0	?	\bigtriangleup	?
Scale	Щ	L	L	L	L	L
GUT	0	\bigtriangleup	X	X	OX	X

The conditions have to be met:

a. Real and complex irreps

b. Type-II Higgs sector (up- and down-type Higgses)

The smallest group is \mathfrak{Q}_{6} , which is the covering group of the smallest non-abelian finite group S_{3} .

Prediction in the lepton sector (type II)

<u>6 real and one phase parameters to</u> describe 6 lepton masses and 6 parameters of V_{MNS}.

Many predictions

47

1. Inverted neutrino mass spectrum, i.e.,
$$m_{\nu_3} < m_{\nu_1}, m_{\nu_2}$$
.
2. $m_{\nu_2}^2 / \Delta m_{23}^2 = \frac{(1+2t_{12}^2+t_{12}^4-rt_{12}^4)^2}{4t_{12}^2(1+t_{12}^2-rt_{12}^2)\cos^2\phi_{\nu}} - \tan^2\phi_{\nu}$ \rightarrow
 $(r = \Delta m_{21}^2 / \Delta m_{23}^2, t_{12} = \tan\theta_{12}),$
where ϕ_{ν} is an independent phase.
3. $\sin\theta_{13} \simeq m_e / \sqrt{2}m_{\mu} \simeq 3.4 \times 10^{-3}$
 $\tan\theta_{23} \simeq 1 - (m_e / \sqrt{2}m_{\mu})^2 = 1 - O(10^{-5}).$

Presumably too small to be measured in a laboratory.

(Minakata, Sugiyama, Yasuda, Inoue and Suekane)

HOWEVER,

May be observable in the flavor conversion. inside Supernova (Supernova Neutrino Oscillation).

50

(Ando, Sato)

How is the SUSY Flavor problem softened?
A. CP violations induced by the soft terms

$$Q_6$$
 and spontaneous \mathcal{CP}
Phase alignment.
 $\Delta_{LL,RR} = U_{L,R}^{\dagger} \tilde{\mathbf{m}}_{LL,RR}^2 U_{L,R} = \text{real}$
 $\Delta_{LR} = U_{aL}^{\dagger} \tilde{\mathbf{m}}_{LR}^2 U_R = \text{real}$

Lepton sector

(Kobayashi, Terao and Kubo, '04)

	Exp. bound	Q_6 Model	m_{e}
$ (\delta_{12}^l)_{LL} $	$4.0 \times 10^{-5} \ \tilde{m}_{\tilde{l}}^2$	4.8×10^{-3}	\overline{m}_{\cdots}
$ (\delta_{12}^l)_{RR} $	$9 \times 10^{-4} \ \tilde{m}_{\tilde{l}}^2$	$8.4 \times 10^{-8} \Delta_e$	μ
$ (\delta_{13}^l)_{LL} $	$2 \times 10^{-2} \ \tilde{m}_{\tilde{l}}^2$	$1.710^{-5} \Delta_L$	$m_e m_\mu$
$ (\delta^l_{23})_{LL} $	$2 \times 10^{-2} \ \tilde{m}_{\tilde{l}}^2$	$8.4 \times 10^{-8} \Delta_L$	$\frac{c}{\mu}$
$ (\delta^l_{23})_{LL}(\delta^d_{13})_{LL} $	$1 \times 10^{-4} \ \tilde{m}_{\tilde{l}}^2$	$1.4 \times 10^{-12} \sqrt{\Delta_L \Delta_e}$	$m_{ au}^{z}$
$ (\delta_{23}^l)_{LL}(\delta_{13}^l)_{RR} $	$2 \times 10^{-5} \tilde{m}_{\tilde{q}}$	$5 \times 10^{-9} \sqrt{\Delta_L \Delta_e}$	
$ (\delta^l_{23})_{RR}(\delta^l_{13})_{RR} $	$9 \times 10^{-4} \ \tilde{m}_{\tilde{l}}^2$	$8.3 \times 10^{-8} \sqrt{\Delta_L \Delta_e}$	
$ (\delta_{23}^l)_{RR}(\delta_{13}^l)_{LL} $	$2 \times 10^{-5} \ \tilde{m}_{\tilde{l}}^2$	$2.4 \times 10^{-11} \sqrt{\Delta_L \Delta_e}$	
$ (\delta_{12}^l)_{LR} $	$8.4 \times 10^{-7} \ \tilde{m}_{\tilde{l}}^2$	$\sim 10^{-6} \tilde{m}_{\tilde{l}}^{-1}$	
$ (\delta_{13}^l)_{LR} $	$1.7 \times 10^{-2} \ \tilde{m}_{\tilde{l}}^2$	$\sim 10^{-7} \tilde{m}_{\tilde{l}}^{-1}$	
$ (\delta_{23}^l)_{LR} $	$1 \times 10^{-2} \ \tilde{m}_{\tilde{i}}^2$	$\sim 10^{-9} \tilde{m}_{\tilde{l}}^{-1}$	

Table 2: Experimental bounds on δ 's, where the parameter $\tilde{m}_{\tilde{l}}$ denote $m_{\tilde{l}}/100$ GeV.

	Exp. bound	Q_6 Model
$\sqrt{ \mathrm{Re}(\delta_{12}^d)^2_{LL,RR} }$	$4.0 \times 10^{-2} \ \tilde{m}_{\tilde{q}}$	$(LL)1.2 \times 10^{-4} \Delta_Q, (RR)1.7 \times 10^{-1} \Delta_d$
$\sqrt{ \mathrm{Re}(\delta_{12}^d)_{LL}(\delta_{12}^d)_{RR} }$	$2.8 \times 10^{-3} \tilde{m}_{\tilde{q}}$	$4.5 \times 10^{-3} \sqrt{\Delta_Q \Delta_d}$
$\sqrt{ \mathrm{Re}(\delta_{12}^d)_{LR}^2 }$	$4.4 \times 10^{-3} \ \tilde{m}_{\tilde{q}}$	$\sim 10^{-4} \tilde{m}_{\tilde{q}}^{-1}$
$\sqrt{ \mathrm{Re}(\delta_{13}^d)^2_{LL,RR} }$	9.8 × 10 ⁻² $\tilde{m}_{\tilde{q}}$	$(LL)7.9 \times 10^{-3} \Delta_Q, (RR)1.4 \times 10^{-1} \Delta_d$
$\sqrt{ \mathrm{Re}(\delta_{13}^d)_{LL}(\delta_{13}^d)_{RR} }$	$1.8 \times 10^{-2} \ \tilde{m}_{\tilde{q}}$	$3.4 \times 10^{-2} \sqrt{\Delta_Q \Delta_d}$
$\sqrt{ \mathrm{Re}(\delta_{13}^d)_{LR}^2 }$	$3.3 \times 10^{-3} \tilde{m}_{\tilde{q}}$	$\sim 10^{-4} \tilde{m}_{\tilde{q}}^{-1}$
$\sqrt{ \mathrm{Re}(\delta_{12}^u)^2_{LL,RR} }$	$1.0 \times 10^{-1} \ \tilde{m}_{\tilde{q}}$	$(LL)1.2 \times 10^{-4} \Delta_Q, (RR)4.4 \times 10^{-4} \Delta_u$
$\sqrt{ \mathrm{Re}(\delta_{12}^u)_{LL}(\delta_{12}^u)_{RR} }$	$1.7 \times 10^{-2} \ \tilde{m}_{\tilde{q}}$	$2.3 \times 10^{-4} \sqrt{\Delta_Q \Delta_u}$
$\sqrt{ \mathrm{Re}(\delta_{12}^u)_{LR}^2 }$	$3.1 \times 10^{-3} \tilde{m}_{\tilde{q}}$	$\sim 10^{-4} \tilde{m}_{\tilde{q}}^{-1}$
$\boxed{ (\delta^d_{23})_{LL,RR} }$	$8.2 \; \tilde{m}_{\tilde{q}}^2$	$(LL)1.6 \times 10^{-2} \Delta_Q, (RR)4.7 \times 10^{-1} \Delta_d$
$ (\delta^d_{23})_{LR} $	$1.6 \times 10^{-2} \ \tilde{m}_{\tilde{q}}^2$	$\sim 10^{-2} \tilde{m}_{\tilde{q}}^{-1}$

Table 1: Experimental bounds on δ 's, where the parameter $\tilde{m}_{\tilde{q}}$ denote $m_{\tilde{q}}/500$ GeV. *(Kajiyama)*

IV. Conclusion. "Low-energy discrete Flavor Symmetry" constrains the flavor structure of the SM, reducing the number of the redundant. parameters of the SM.

softens the SUSY flavor problem. No assumption on the universality of the soft. terms is needed.