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The most convincing argument for SUSY
is the exact Gauge Coupling Unification.
 

SUSY

A critical look at the facts.

Do you like SUSY?

I. Motivatio!
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 Gauge Coupling Unificatio!
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D.Bourilkov DPF 2004 9

Example of SUSY FitExample of SUSY Fit
If you require for the MSSM

you might have problems.
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EW Global fit 2004: αS(MZ) = 0.1213 ± 0.018

MSUSY ! 16 ± 10 GeV

RPP QCD section:αS(MZ) = 0.1187 ± 0.020

MSUSY ! 160 ± 120 GeV

Bourikov, ’04



MSUSY ! 160 ± 120 GeV may be problematic.

PDG04



may be accidental ???
D.Bourilkov DPF 2004 9

Example of SUSY FitExample of SUSY Fit
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the Proton Decay ?
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What abou$



Shiozawa,

10



Murayama and Pierce, ’02

The natural proton lives tooooo long for the minimal  
SUSY SU(5) GUT.
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at superK



GUTs other than the minimal on'

Intersecting Branes

Extra Dimensions

String-like Unificatio!

etc
12



SUSY.

13

Nevertheless we lik'

Schön, schön, schön

B. She can increase the natural scale (’t Hoo) and Veltman)

A. The maximal extension of the Poincare algebra.
(Coleman and Mandula)



=
Hi*s mass

Tre'

Loop correctio!

Fine tuning of the Hi*s mass

if the Hi*s mass is quadratic divergent.
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We like SUSY.



The SUSY flavor problem.

But  SUSY  .

So)   SUSY at low-energy



More than 100 so) parameters into the SM.

They induce FCNCs and CP
 that are extremely suppressed in the SM.

Q U c, Dc, Hu, Hd Q3 U c
3 , D

c
3, H

u
3 , Hd

3

Q6 21 22 1+,2 1−,1

L Ec, N c L3 Ec
3, N

c
3

Q6 21 22 1+,2 1−,1

L, Ec, N c L3, Ec
3 N c

3

Q6 22 1+,0 1−,3

∆MBs/∆MBd
>

ZM × ZN

µ → e + γ , b → s + γ ,

∆MK , ∆MB , εK , ε′/ε ,

9

and EDMs.
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III. SUPPRESSION OF FCNCS AT MSUSY

Since all the soft scalar masses have the form (8), we write the mass matrices as

m̃2
aLL = m2

a


aa

L 0 0

0 aa
L 0

0 0 ba
L

 , m̃2
aRR = m2

a


aa

R 0 0

0 aa
R 0

0 0 ba
R

 (a = !̃, q̃), (35)

where m!̃,q̃ denote the average of the slepton and squark masses, respectively, and

(aL(R), bL(R)) are dimensionless free parameters of O(1). Further, since the trilinear in-

teractions are also S3 invariant, the left-right mass matrix can be written as

m̃2
aLR =


ma

1A
a
1 + ma

2A
a
2 ma

2A
a
2 ma

5A
a
5

ma
2A

a
2 ma

1A
a
1 −ma

2A
a
2 ma

5A
a
5

ma
4A

a
4 ma

4A
a
4 ma

3A
a
3

 (a = !̃, q̃), (36)

where Aa
i are free parameters of dimension one. Here we assume that they are in the same

order as the gaugino masses.

We consider FCNC processes, e.g. Br(µ → e + γ), that are proportional to the off-

diagonal elements of

∆a
LL,RR = U †

aL,R m̃2
aLL,RR UaL,R and ∆a

LR = U †
aL m̃2

aLR UaR. (37)

By using the unitary matrices given in Eqs. (23),(24) and (28)-(31), ∆’s can be explicitly

evaluated. In [7], experimental bounds on the dimensionless quantities

δa
LL,RR,LR = ∆a

LL,RR,LR/m2
ã (a = !, q), (38)

are given, which are summarized in Table I. The theoretical values of δ’s for the present

model are calculated below, where

∆aa
L,R = aa

L,R − ba
L,R, Ãa

i =
Aa

i

mã
(a = !, q), (39)

and aL,R, bL,R are defined in (35).
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A parametrization of FCNCs and   CP
in the superCKM basis:



Exp. bound Q6 Model√
|Re(δd

12)
2
LL,RR| 4.0 × 10−2 m̃q̃ (LL)1.2 × 10−4∆Q, (RR)1.7 × 10−1∆d√

|Re(δd
12)LL(δd

12)RR| 2.8 × 10−3 m̃q̃ 4.5 × 10−3
√

∆Q∆d√
|Re(δd

12)
2
LR| 4.4 × 10−3 m̃q̃ ∼ 10−4m̃−1

q̃√
|Re(δd

13)
2
LL,RR| 9.8 × 10−2 m̃q̃ (LL)7.9 × 10−3∆Q, (RR)1.4 × 10−1∆d√

|Re(δd
13)LL(δd

13)RR| 1.8 × 10−2 m̃q̃ 3.4 × 10−2
√

∆Q∆d√
|Re(δd

13)
2
LR| 3.3 × 10−3 m̃q̃ ∼ 10−4m̃−1

q̃√
|Re(δu

12)
2
LL,RR| 1.0 × 10−1 m̃q̃ (LL)1.2 × 10−4∆Q, (RR)4.4 × 10−4∆u√

|Re(δu
12)LL(δu

12)RR| 1.7 × 10−2 m̃q̃ 2.3 × 10−4
√

∆Q∆u√
|Re(δu

12)
2
LR| 3.1 × 10−3 m̃q̃ ∼ 10−4m̃−1

q̃

|(δd
23)LL,RR| 8.2 m̃2

q̃ (LL)1.6 × 10−2∆Q, (RR)4.7 × 10−1∆d

|(δd
23)LR| 1.6 × 10−2 m̃2

q̃ ∼ 10−2m̃−1
q̃

Table 1: Experimental bounds on δ’s, where the parameter m̃q̃ denote mq̃/500
GeV.

m̃l̃ = ml̃/100 GeV, m̃q̃ = mq̃/500 GeV

1

Exp. bound Q6 Model

|(δl
12)LL| 4.0 × 10−5 m̃2

l̃
4.8 × 10−3∆L

|(δl
12)RR| 9 × 10−4 m̃2

l̃
8.4 × 10−8∆e

|(δl
13)LL| 2 × 10−2 m̃2

l̃
1.710−5∆L

|(δl
23)LL| 2 × 10−2 m̃2

l̃
8.4 × 10−8∆L

|(δl
12)LR| 8.4 × 10−7 m̃2

l̃
∼ 10−6m̃−1

l̃|(δl
13)LR| 1.7 × 10−2 m̃2

l̃
∼ 10−7m̃−1

l̃|(δl
23)LR| 1 × 10−2 m̃2

l̃
∼ 10−9m̃−1

l̃

Table 4: Experimental bounds on δ’s, where the parameter m̃l̃ denote ml̃/100
GeV.
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8.4 × 10−8∆L

|(δl
23)LL(δd

13)LL| 1 × 10−4 m̃2
l̃

1.4 × 10−12
√

∆L∆e

|(δl
23)LL(δl

13)RR| 2 × 10−5 m̃q̃ 5 × 10−9
√

∆L∆e

|(δl
23)RR(δl

13)RR| 9 × 10−4 m̃2
l̃

8.3 × 10−8
√

∆L∆e

|(δl
23)RR(δl

13)LL| 2 × 10−5 m̃2
l̃

2.4 × 10−11
√

∆L∆e

|(δl
12)LR| 8.4 × 10−7 m̃2

l̃
∼ 10−6m̃−1

l̃|(δl
13)LR| 1.7 × 10−2 m̃2

l̃
∼ 10−7m̃−1

l̃|(δl
23)LR| 1 × 10−2 m̃2

l̃
∼ 10−9m̃−1

l̃

Table 2: Experimental bounds on δ’s, where the parameter m̃l̃ denote ml̃/100
GeV.
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Exp. bound Exp. bound
|Im(δd

12)LL,RR| 4.8 × 10−1 m̃2
q̃ |Im(δd

12)LR| 2.0 × 10−5 m̃2
q̃

|Im(δd
11)LR| 6.7 × 10−8 m̃2

q̃ |Im(δu
11)LR| 6.7 × 10−8 m̃2

q̃

|Im(δ!
11)LR| 3.7 × 10−8 m̃2

!̃

3

(Gbbiani et al, Abel, Khalil and Lebedev, Endo, Kakizaki and 
Yamaguchi, Hisano and Shimizu)



Why are             so sma,?
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1

The SUSY flavor proble-

A popular assumption is:

Hidden Sector Scenario

MSSM
Mediator

SUSY

Gravity, Gauge, Anomaly, Gaugino, etc
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“Low-energy discrete Flavor Symmetry”

We us'

to constrain the Yukawa sector, and 
simultaneously
to so)en the SUSY flavor problem.

Testable predictions

No hidden sector scenario



II.  Dihedral Symmetry  

(平面対称性）

The classification of the finite groups has bee! 
completed 1981 (Gorenstein); about 100 years later 
than the case of the continues group.

g= order of a finite group
  = # of the group elements

21



1. No non-abelian finite group exists  for odd g.

2. For sma,er g  there exist only three types.

3. The sma,est non-abelian finite group is S3=D3.

a) Permutation groups

φ′(x, y) = Q̃2N φ(x, D̃−1
N y), Q̃2N ∈ Q2N , D̃N ∈ DN (1)

φ′(x, y) = S φ(Λ−1x, y), S ∈ SL(2, C), Λ ∈ L↑
+ (2)

R̃N = Rotation about 2π/N (N = 12) (3)

P̃D = Parity transformation (4)

GDN = {R̃N , (R̃N)2, . . . , (R̃N)N = 1,

R̃N P̃D, (R̃N)2P̃D, . . . , (R̃N)N P̃D = P̃D}

= {2π/N, 4π/N, . . . , 2π, 2

π/N with P̃D, 4π/N with P̃D, . . . , P̃D}rotations

SN , N = 3, 4, 5, . . . , AN , N = 4, 5, . . .

DN , N = 3, 4, 5, . . .

Q2N , N = 2, 3, 4, . . .

([ZM , ZN ] = 0)

6

b) Dihedral groups
 and 
Binary dihedral (Dicyclic) group

φ′(x, y) = Q̃2N φ(x, D̃−1
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6
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6

c) Twisted products of 

Q U c, Dc, Hu, Hd Q3 U c
3 , D

c
3, H

u
3 , Hd

3

Q6 21 22 1+,2 1−,1

L Ec, N c L3 Ec
3, N

c
3

Q6 21 22 1+,2 1−,1

L, Ec, N c L3, Ec
3 N c

3

Q6 22 1+,0 1−,3

∆MBs/∆MBd
>

ZM × ZN

9



Classificatio! 
of Finite  Groups

(Frampton and Kephart, ’o1)

23



Twisted products

φ′(x, y) = Q̃2N φ(x, D̃−1
N y), Q̃2N ∈ Q2N , D̃N ∈ DN (1)

φ′(x, y) = S φ(Λ−1x, y), S ∈ SL(2, C), Λ ∈ L↑
+ (2)

R̃N = Rotation about 2π/N (N = 12) (3)

P̃D = Parity transformation (4)

GDN = {R̃N , (R̃N)2, . . . , (R̃N)N = 1,

R̃N P̃D, (R̃N)2P̃D, . . . , (R̃N)N P̃D = P̃D}

= {2π/N, 4π/N, . . . , 2π, 2

π/N with P̃D, 4π/N with P̃D, . . . , P̃D}rotations

SN , N = 3, 4, 5, . . .

AN , N = 4, 5, . . .

([ZM , ZN ] = 0)

6
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Literature on Finite Groups: Landau and Lifschitz,” Quantum mechanics”



Dihedral Symmetry  (平面対称性）

Symmetry of a regular polygon (正多角形）

25

(Babu and Kubo. Phys. Rev. D71,056006 (2005);
Kubo, hep-ph/0506043)



Figure 1: A regular polygon with N = 6 edges, which are located at y = y0, y1, . . . , yN−1.

The coordinate of the extra dimension is denoted by y, and the N sites are located at y =
y0, y1, . . . , yN−1. Under a DN transformation, the set of coordinates (y0, y1, . . . , yN−1) changes to

(y′
0, y

′
1, . . . , y

′
N−1), which we express in terms of a N×N real matrix. The matrix for the fundamental rotation (i.e., the rotation of θN) is given by

R̃N =


0 0 0 · · · 1
1 0 0 · · · 0
0 1 0 · · · 0

· · ·
0 0 · · · 1 0

 , (2)

and that for the parity transformation is

P̃D =


1 0 · · · 0 0
0 · · · 0 0 1
0 · · · 0 1 0

· · ·
0 1 0 · · · 0

 . (3)

Then 2N group elements of DN are:

GDN = {R̃N , (R̃N)2, . . . , (R̃N)N = 1, R̃N P̃D, (R̃N)2P̃D, . . . , (R̃N)N P̃D = P̃D}. (4)

Using the properties, P̃ 2
D = 1 and P̃DR̃N P̃D = (R̃N)−1, one can convince oneself that GDN is

indeed a group. There exist two-dimensional representatons for R̃N and P̃D:

R̃N =

(
cos θN sin θN

− sin θN cos θN

)
, P̃D =

(
1 0
0 −1

)
, (5)

2

Figure 1: A regular polygon with N = 6 edges, which are located at y = y0, y1, . . . , yN−1.

The coordinate of the extra dimension is denoted by y, and the N sites are located at y =
y0, y1, . . . , yN−1. Under a DN transformation, the set of coordinates (y0, y1, . . . , yN−1) changes to

(y′
0, y

′
1, . . . , y

′
N−1), which we express in terms of a N×N real matrix. The matrix for the fundamental rotation (i.e., the rotation of θN) is given by

R̃N =


0 0 0 · · · 1
1 0 0 · · · 0
0 1 0 · · · 0

· · ·
0 0 · · · 1 0

 , (2)

and that for the parity transformation is

P̃D =


1 0 · · · 0 0
0 · · · 0 0 1
0 · · · 0 1 0

· · ·
0 1 0 · · · 0

 . (3)

Then 2N group elements of DN are:

GDN = {R̃N , (R̃N)2, . . . , (R̃N)N = 1, R̃N P̃D, (R̃N)2P̃D, . . . , (R̃N)N P̃D = P̃D}. (4)

Using the properties, P̃ 2
D = 1 and P̃DR̃N P̃D = (R̃N)−1, one can convince oneself that GDN is

indeed a group. There exist two-dimensional representatons for R̃N and P̃D:

R̃N =

(
cos θN sin θN

− sin θN cos θN

)
, P̃D =

(
1 0
0 −1

)
, (5)

2

φ′(x, y) = Q̃2N φ(x, D̃−1
N y), Q̃2N ∈ Q2N , D̃N ∈ DN (1)

φ′(x, y) = S φ(Λ−1x, y), S ∈ SL(2, C), Λ ∈ L↑
+ (2)

R̃N = Rotation about 2π/N (N = 12) (3)

P̃D = Parity transformation (4)

GDN = {R̃N , (R̃N)2, . . . , (R̃N)N = 1,

R̃N P̃D, (R̃N)2P̃D, . . . , (R̃N)N P̃D = P̃D}

= {2π/N, 4π/N, . . . , 2π, 2

π/N with P̃D, 4π/N with P̃D, . . . , P̃D}rotations

6

Figure1:AregularpolygonwithN
=6edges,whicharelocatedaty=y

0,y
1,...,y

N−1.

Thecoordinateoftheextradimensionisdenotedbyy,andtheN
sitesarelocatedaty=

y
0,y

1,...,y
N−1.UnderaD

Ntransformation,thesetofcoordinates(y
0,y

1,...,y
N−1)changesto

(y′
0,y′

1,...,y′
N−1),whichweexpressintermsofaN×N

realmatrix.Thematrixforthefundamentalrotation(i.e.,therotationofθ
N)isgivenby

R̃
N

=


0

0
0···

1

1
0

0···
0

0
1

0···
0

··· 0
0···

1
0

,

(2)

andthatfortheparitytransformationis

P̃
D

=


1

0···
0

0

0···
0

0
1

0···
0

1
0

···
0

1
0···

0

.

(3)

Then2N
groupelementsofD

Nare:

G
D

N={R̃
N,(R̃

N)2
,...,(R̃

N)N
=1,R̃

NP̃
D,(R̃

N)2
P̃

D,...,(R̃
N)N

P̃
D=P̃

D}.
(4)

Usingtheproperties,P̃2
D=

1andP̃
DR̃

NP̃
D=

(R̃
N)−1,onecanconvinceoneselfthatG

D
Nis

indeedagroup.Thereexisttwo-dimensionalrepresentatonsforR̃
NandP̃

D:

R̃
N

=(
cosθ

N
sinθ

N

−sinθ
N

cosθ
N

)
,P̃

D=
(

1
0 0−1

)
,

(5)

2

φ′(x, y) = Q̃2N φ(x, D̃−1
N y), Q̃2N ∈ Q2N , D̃N ∈ DN (1)

φ′(x, y) = S φ(Λ−1x, y), S ∈ SL(2, C), Λ ∈ L↑
+ (2)

R̃N = Rotation about 2π/N (N = 12) (3)

P̃D = Parity transformation (4)

GDN = {R̃N , (R̃N)2, . . . , (R̃N)N = 1,

R̃N P̃D, (R̃N)2P̃D, . . . , (R̃N)N P̃D = P̃D}

= {2π/N, 4π/N, . . . , 2π, 2

π/N with P̃D, 4π/N with P̃D, . . . , P̃D}rotations

6

26



24 Elements of D_N

φ′(x, y) = Q̃2N φ(x, D̃−1
N y), Q̃2N ∈ Q2N , D̃N ∈ DN (1)

φ′(x, y) = S φ(Λ−1x, y), S ∈ SL(2, C), Λ ∈ L↑
+ (2)

R̃N = Rotation about 2π/N (N = 12) (3)

P̃D = Parity transformation (4)

GDN = {R̃N , (R̃N)2, . . . , (R̃N)N = 1,

R̃N P̃D, (R̃N)2P̃D, . . . , (R̃N)N P̃D = P̃D}

= {2π/N, 4π/N, . . . , 2π, 2

π/N with P̃D, 4π/N with P̃D, . . . , P̃D}rotations

6

27



Two-dimensional representations of R and P

The regular polygon is invariant under the symmetry operations of the dihedral group DN .
The DN operations are 2N discrete rotations, where N of 2N rotations are combined with
a parity transformation. Clearly, a discrete polygon rotation of n × θN , n ∈ {1, . . . , N}
corresponds to a discrete translation of the lattice sites of n × a, where a is the lattice
spacing and

θN ≡ 2π/N. (1)

The coordinate of the extra dimension is denoted by y, and the N sites are located at
y = y0, y1, . . . , yN−1. (yN+i is identified with yi.) Under a DN transformation, the set of
coordinates (y0, y1, . . . , yN−1) changes to (y′

0, y
′
1, . . . , y

′
N−1), which we express in terms of a

N ×N real matrix. The matrix for the fundamental rotation (i.e., a rotation of θN) is given
by

RN =


0 0 0 · · · 1
1 0 0 · · · 0
0 1 0 · · · 0

· · ·
0 0 · · · 1 0

 , (2)

and that for the parity transformation is

PD =


1 0 · · · 0 0
0 · · · 0 0 1
0 · · · 0 1 0

· · ·
0 1 0 · · · 0

 . (3)

Then the 2N group elements of DN are:

GDN = {RN , (RN)2, . . . , (RN)N = 1, RNPD, (RN)2PD, . . . , (RN)NPD = PD}. (4)

Using the properties, P 2
D = 1 and PDRNPD = (RN)−1, one can convince oneself that GDN

is indeed a group.
There exist two-dimensional representations for R̃N and P̃D [2, 12]:

R̃N =

(
cos θN sin θN

− sin θN cos θN

)
, P̃D =

(
1 0
0 −1

)
, (5)

which are useful representations in finding irreducible representations (irreps) of DN (θN is
given in (1)). It follows that DN is a subgroup of SO(3), which one sees if one embeds R̃N

and P̃D into 3 × 3 matrices

R̃N →
 cos θN sin θN 0

− sin θN cos θN 0
0 0 1

 , P̃D →
 1 0 0

0 −1 0
0 0 −1

 . (6)
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Therefore, DN has only real representations.
SU(2) is the universal covering group of SO(3), and has pseudo real and real irreps. Q2N

is a finite subgroup of SU(2). It can be interpreted as the covering group of DN in the sense
that the defining matrices R̃2N and P̃Q for Q2N satisfy

(R̃2N)2 = R̃N , (P̃Q)4 = (P̃D)2 = 1, (7)

where

R̃2N =

(
cos θN

2 sin θN
2

− sin θN
2 cos θN

2

)
, P̃Q =

(
i 0
0 −i

)
. (8)

The set of 4N elements of Q2N is given by

GQ2N = {R̃2N , (R̃2N)2, . . . , (R̃2N)2N = 1, R̃2N P̃Q, (R̃2N)2P̃Q, . . . , (R̃2N)2N P̃Q = P̃Q}. (9)

There exist only one- and two-dimensional irreps for DN and Q2N . For Q2N , there are
N − 1 different two-dimensional irreps, which we denote by

2", ! = 1, . . . , N − 1. (10)

2" with odd ! is a pseudo real representation, while 2" with even ! is a real representation,
where 2" with even ! is exactly 2"/2 of DN . Under the fundamental rotation (i.e., a rotation
of θN which is defined in (1)), 2" transforms with the matrix

R̃2N(2") = (R̃2N)" =

(
cos(! θN

2 ) sin(! θN
2 )

− sin(! θN
2 ) cos(! θN

2 )

)
. (11)

It is straightforward to calculate the Clebsch-Gordan coefficients for tensor products of
irreps [12]. There exist four different one-dimensional irreps of Q2N . Because of the relation
(7), each of them has a definite Z4 charge. Further, under the fundamental rotation, they
either remain unchanged or change their sign. Therefore, one-dimensional irreps can be
characterized according to Z2 × Z4 charge:

1+,0, 1−,0, 1+,2, 1−,2 for N = 2, 4, 6, . . . , (12)

1+,0, 1−,1, 1+,2, 1−,3 for N = 3, 5, 7, . . . , (13)

where the 1+,0 is the true singlet of Q2N , and only 1−,1 and 1−,3 are complex irreps. Note
that all the real representations of Q2N are exactly those of DN , which is one of the reasons
why we would like to call Q2N as the covering group of DN .

III. FIELD THEORY WITH THE DIHEDRAL INVARIANCE

Let us now discuss how to construct field theory models with a dihedral invariance. We
denote the five-dimensional coordinate by

zM = (xµ, y) with µ = 0, . . . , 3. (14)

4
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Some group theoretical features for 
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2. Only one- and two-dimensional irreps.
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Therefore, DN has only real representations.
SU(2) is the universal covering group of SO(3), and has pseudo real and real irreps. Q2N

is a finite subgroup of SU(2). It can be interpreted as the covering group of DN in the sense
that the defining matrices R̃2N and P̃Q for Q2N satisfy

(R̃2N)2 = R̃N , (P̃Q)4 = (P̃D)2 = 1, (7)

where
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of θN which is defined in (1)), 2" transforms with the matrix

R̃2N(2") = (R̃2N)" =

(
cos(! θN

2 ) sin(! θN
2 )

− sin(! θN
2 ) cos(! θN

2 )

)
. (11)

It is straightforward to calculate the Clebsch-Gordan coefficients for tensor products of
irreps [12]. There exist four different one-dimensional irreps of Q2N . Because of the relation
(7), each of them has a definite Z4 charge. Further, under the fundamental rotation, they
either remain unchanged or change their sign. Therefore, one-dimensional irreps can be
characterized according to Z2 × Z4 charge:

1+,0, 1−,0, 1+,2, 1−,2 for N = 2, 4, 6, . . . , (12)

1+,0, 1−,1, 1+,2, 1−,3 for N = 3, 5, 7, . . . , (13)

where the 1+,0 is the true singlet of Q2N , and only 1−,1 and 1−,3 are complex irreps. Note
that all the real representations of Q2N are exactly those of DN , which is one of the reasons
why we would like to call Q2N as the covering group of DN .

III. FIELD THEORY WITH THE DIHEDRAL INVARIANCE

Let us now discuss how to construct field theory models with a dihedral invariance. We
denote the five-dimensional coordinate by

zM = (xµ, y) with µ = 0, . . . , 3. (14)
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5. Tensor Products (Q6)

φ(x, y) → φ′(x, y) = Q̃2N φ(x, y), Q̃2N ∈ Q2N

DN ⊂ S0(3)

det R̃N = det P̃D → 1

Q2N ⊂ SU(2)

det R̃2N = det P̃Q = 1

(θN = 2π/N)

Q6

2k =


real for k = even

pseudoreal for k = odd

21 × 22 = 1−,3 + 1−,1 + 21 x1

x2

 ×

 a1

a2

 = (x1a2 + x2a1) (x1a1 − x2a2)

 x1a1 + x2a2

x1a2 − x2a1

 .

7

and so on.



A possible origi! 
of 

the dihedral symmetry
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Dihedral Invarianc' 
of

 a deconstructed extra dimensio!

R: Discrete RotationsP: Parity 

(Kubo, hep-ph/0506043)
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φ′(x, y) = Q̃2N φ(x, D̃−1
N y), Q̃2N ∈ Q2N , D̃N ∈ DN (1)

φ′(x, y) = S φ(Λ−1x, y), S ∈ SL(2, C), Λ ∈ L↑
+ (2)

6

Dihedral Transformatio!

35

Orbifold B.C.s break Dihedral Invariance. 
But the Q_2N as a global , internal symmetry is intact.

φ(x, y) → φ′(x, y) = Q̃2N φ(x, y), Q̃2N ∈ Q2N

7
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III.  An Exampl'

A         Model

(Babu and Kubo, ’04)

φ(x, y) → φ′(x, y) = Q̃2N φ(x, y), Q̃2N ∈ Q2N

DN ⊂ S0(3)

det R̃N = det P̃D → 1

Q2N ⊂ SU(2)

det R̃2N = det P̃Q = 1

(θN = 2π/N)

Q6

7
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Terao+j2
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VCKM = OT
u PqOd, (5)

Pq = P †
uPd = diag. ( 1, exp(i2θ2), exp(iθ1) )

θ1 = θ2 for Q6

m0 > 0.3 eV

θ23 = π/4

10

VCKM = OT
u PqOd, (5)

Pq = P †
uPd = diag. ( 1, exp(i2θ2), exp(iθ1) )

θ1 = θ2 for Q6

m0 > 0.3 eV

θ23 = π/4

10

VCKM = OT
u PqOd, (5)

Pq = P †
uPd = diag. ( 1, exp(i2θ2), exp(iθ1) )

θ1 = θ2 for Q6

m0 > 0.3 eV

θ23 = π/4

sin θ13 = 0.034

10

VCKM = OT
u PqOd, (5)

Pq = P †
uPd = diag. ( 1, exp(i2θ2), exp(iθ1) )

θ1 = θ2 for Q6

m0 > 0.3 eV

θ23 = π/4

sin θ13 = 0.034

θ13 = 0

10

VCKM = OT
u PqOd, (5)

Pq = P †
uPd = diag. ( 1, exp(i2θ2), exp(iθ1) )

θ1 = θ2 for Q6

m0 > 0.3 eV

θ23 = π/4

sin θ13 = 0.034

θ13 = 0

sin 2β ! 0.5

10

VCKM = OT
u PqOd, (5)

Pq = P †
uPd = diag. ( 1, exp(i2θ2), exp(iθ1) )

θ1 = θ2 for Q6

m0 > 0.3 eV

θ23 = π/4

sin θ13 = 0.034

θ13 = 0

sin 2β ! 0.733

sin θC = 0

10

VCKM = OT
u PqOd, (5)

Pq = P †
uPd = diag. ( 1, exp(i2θ2), exp(iθ1) )

θ1 = θ2 for Q6

m0 > 0.3 eV

θ23 = π/4(?)

sin θ13 = 0.034

θ13 = 0(?)

sin 2β ! 0.733

sin θC = 0

10

VCKM = OT
u PqOd, (5)

Pq = P †
uPd = diag. ( 1, exp(i2θ2), exp(iθ1) )

θ1 = θ2 for Q6

m0 > 0.3 eV

θ23 = π/4(?)

sin θ13 = 0.034

θ13 = 0(?)

sin 2β ! 0.733

sin θC = 0

10

VCKM = OT
u PqOd, (5)

Pq = P †
uPd = diag. ( 1, exp(i2θ2), exp(iθ1) )

θ1 = θ2 for Q6

m0 > 0.3 eV

θ23 ! π/4

sin θ13 = 0.034

θ13 = 0(?)

sin 2β ! 0.733

sin θC = 0

10
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Model

φ(x, y) → φ′(x, y) = Q̃2N φ(x, y), Q̃2N ∈ Q2N

DN ⊂ S0(3)

det R̃N = det P̃D → 1

Q2N ⊂ SU(2)

det R̃2N = det P̃Q = 1

(θN = 2π/N)

Q6

2k =


real for k = even

pseudoreal for k = odd

21 × 22 = 1−,3 + 1−,1 + 21 x1

x2

 ×

 a1

a2

 = (x1a2 + x2a1) (x1a1 − x2a2)

 x1a1 + x2a2

x1a2 − x2a1

 .

∆LL,RR = U †
L,R m̃2

LL,RR UL,R = real

∆LR = U †
aL m̃2

LR UR = real

MH > 5 TeV ∆MBd
, ∆MK

(Q2N with N = 3, 5, 7, . . .)

7
The original motivation:

[8–10, 15, 16]. Therefore, the Ansatz (1) is appropriate for unification, especially for the Pati-

Salam type unification [17], in which the left-handed and right-handed fermion families can be

separately unified.

It is known [6] that within the SM, any mass matrix for both up and down quarks can

be simultaneously brought, without changing physics, to the from (1) with |M12| != |M21|.
However, beyond the SM, this is no longer true, and to obtain (1) beyond the SM even with

|M12| != |M21|, some principle should be required. In this paper we are motivated by a desire

to derive the form (1) solely from a symmetry principle. To be definite, we assume that the

responsible symmetry is (A) based on a nonabelian discrete group, and (B) only spontaneously

broken. As we will find, (i) the smallest group that satisfies our assumptions is Q6, a binary

dihedral group with 12 elements, and (ii) the Higgs sector of the SM has to be so extended

that the up- and down-type right-handed fermion families couple to their own SU(2)L Higgs

doublets (type II Higgs). So, the Higgs sector of the MSSM fits the desired Higgs structure.

Therefore, we are naturally led to consider a supersymmetric extension of the SM based on

Q6, as we will do in this paper. [ Frampton and Kephart [18] came to Q6, but from different

reasons b.] We will also discuss other important consequences of the supersymmetric Q6 model

such as a solution to the SUSY flavor problem [42]. We find that CP can be spontaneously

broken, and thanks to Q6 a phase alignment for each A term (trilinear coupling of bosonic

superpartners) with the corresponding Yukawa term occurs. Note that the misalignment of the

phases appearing in the Yukawa and A terms is the origin of a large contribution to the electric

dipole moments (EDM) of neutron etc [43]. We also find that Q6 can forbid all the Baryon

number violating d = 3 and 4 operators, and allows only one R-parity violating operator with

d ≤ 4.

After we discuss group theory on the dihedral groups DN and the binary dihedral groups

QN [18, 44] in Sect. II, we consider a supersymmetric extension of the SM based on Q6 in

Sect. III. There we discuss the quark sector, lepton sector and Higgs sector, separately. We

make predictions in the |Vub|− η̄, |Vub|− sin 2β(φ1) and |Vub|− Vtd/Vts| planes as well as on the

b One of the first papers on discrete symmetries are [19–26]. Phenomenologically viable models based on
nonabelian discrete flavor symmetries A4, S3, D4 and Q4, which can partly explain the flavor structure of
quarks and leptons such as large neutrino mixing, have been recently constructed, respectively, in [27–29],
[30–33], [34, 35], and [36]. In [37–41], nonabelian discrete symmetries have been used to soften the SUSY
flavor problem.

2

To obtain the mass matrix of the neares$ 
neighbor typ'

purely 1om a discrete symmetry.

I. INTRODUCTION

The gauge interactions of the standard model (SM) respect UL(3)×UR(3) family symmetry

in both the leptonic and quark sectors. It is the Yukawa sector of the SM that breaks this

family symmetry, and is responsible for the generation of the lepton and quark masses and

their mixing. If no condition is imposed, there are 3×3×2×2−8 = 28 real free parameters in

the quark sector alone, where 8 is the number of phases that can be absorbed into the phases

of the quark fields. Of 28 only 10 parameters are physical parameters in the SM. That is,

there are 18 redundant parameters in that sector. The presence of redundant parameters is not

related to a symmetry in the SM. Even if they are set equal to zero at some energy scale, they

will appear at different scales. These redundant parameters may become physical parameters

when going beyond the SM, and, moreover, they can induce flavor changing neutral currents

(FCNCs) and CP violating phenomena that are absent or strongly suppressed in the SM. Since

the SM can not control the redundant parameters, the size of the new FCNCs and CP violating

phases may be unacceptably large unless there is some symmetry, or one fine tunes their values.

This is a flavor problem that can occur when going beyond the SM, and the most familiar case

is the minimal supersymmetric standard model (MSSM) [1].

Reducing phenomenologically the number of the free parameters in the mass matrices of

quarks and leptons had started already decades ago. One of the successful Ansätze for the

quark mass matrices, first proposed by Weinberg [2, 3]and then extended by Fritzsch [4], is of

a nearest neighbor interaction (NNI) type a [6]-[16]:

M =


0 C 0

±C 0 B

0 B′ A

 . (1)

The complex parameters B,B′, C and A for each of the up and down quark sectors can be

made real by an appropriate phase rotation on the quark fields, and as a consequence, there

are only 8 real free parameters with two independent phases. The Ansatz (1) can successfully

reproduce the quark masses and the Cabibbo-Kobayashi-Maskawa (CKM) mixing matrix VCKM

[5, 11]. It has been also realized that the Ansatz (1) can be used in the leptonic sector, too

a See [5] for review.

1

(Weinberg,Wilczek,Fritzsch)
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The conditions have to be met:

a. Real and complex irreps

b. Type-II Hi*s sector
(up- and down-type Hi*ses)

The sma,est group is Q6, which is the covering 
group of the sma,est non-abelian finite group  S3.
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Q6 assignmen$

Spontaneous  CP  is possible.

Q U c, Dc, Hu, Hd Q3 U c
3 , D

c
3, H

u
3 , Hd

3

Q6 21 22 1+,2 1−,1

L Ec, N c L3 Ec
3, N

c
3

Q6 21 22 1+,2 1−,1

L, Ec, N c L3, Ec
3 N c

3

Q6 22 1+,0 1−,3

9

Q U c, Dc, Hu, Hd Q3 U c
3 , D

c
3, H

u
3 , Hd

3

Q6 21 22 1+,2 1−,1

L Ec, N c L3 Ec
3, N

c
3

Q6 21 22 1+,2 1−,1

L, Ec, N c L3, Ec
3 N c

3

Q6 22 1+,0 1−,3

9

Q U c, Dc, Hu, Hd Q3 U c
3 , D

c
3, H

u
3 , Hd

3

Q6 21 22 1+,2 1−,1

L Ec, N c L3 Ec
3, N

c
3

Q6 21 22 1+,2 1−,1

L, Ec, N c L3, Ec
3 N c

3

Q6 22 1+,0 1−,3

9

Quarks

Leptons

I

II
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Prediction in the quark sector

8 real and one phase parameters to
describe 6 quark masses and 4 parameters
of VCKM.

One predictio!



| V      |ubsin 2 φ 1 ー





68 º

Unitarity Triangl'

(S. Bosch, Moriond ’05)



Upper bound

1o-

Q U c, Dc, Hu, Hd Q3 U c
3 , D

c
3, H

u
3 , Hd

3

Q6 21 22 1+,2 1−,1

L Ec, N c L3 Ec
3, N

c
3

Q6 21 22 1+,2 1−,1

L, Ec, N c L3, Ec
3 N c

3

Q6 22 1+,0 1−,3

∆MBs/∆MBd

9

SM (PDG’04)

Q6
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Prediction in the lepton sector (type II)

6 real and one phase parameters to
describe 6 lepton masses and 6 parameters
of VMNS.

Many predictions



µ → e + γ , b → s + γ

1. Inverted neutrino mass spectrum, i.e., mν3 < mν1 ,mν2 .

2. m2
ν2

/∆m2
23 = (1+2t212+t412−rt412)

2

4t212(1+t212)(1+t212−rt212) cos2 φν
− tan2 φν

(r = ∆m2
21/∆m2

23, t12 = tan θ12),

where φν is an independent phase.

3. sin θ13 # me/
√

2mµ # 3.4 × 10−3

tan θ23 # 1 − (me/
√

2mµ)2 = 1 − O(10−5).

4. The prediction of < mee >.

2



1. Inverted neutrino mass spectrum, i.e., mν3 < mν1 ,mν2 .

2. m2
ν2

/∆m2
23 = (1+2t212+t412−rt412)

2

4t212(1+t212)(1+t212−rt212) cos2 φν
− tan2 φν

(r = ∆m2
21/∆m2

23, t12 = tan θ12),

where φν is an independent phase.

3. δ = arg(Y ν
4 ) − φν = −φν .

4. sin θ13 " me/
√

2mµ " 3.4 × 10−3 and tan θ23 " 1 − (me/
√

2mµ)2 = 1 − O(10−5).

5. Prediction of < mee >.

tan θ12 = 0.68, ∆m2
21 = 6.9 × 10−5 eV2 and ∆m2

23 = 2.5 × 10−3 eV2.

sin2 θ12 = 0.3 and ∆m2
21 = 6.9 × 10−5 eV2

∆m2
23 = 1.4, 2.3 and 3.0 × 10−3 eV2

8
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Presumably too sma,  to be measured in a 
laboratory. 
(Minakata, Sugiyama, Yasuda, Inoue and  Suekane)

May be observable in the flavor conversio! 
inside Supernova (Supernova  Neutrino 
Osci,ation).
(Ando, Sato)

HOWEVER,



1. Inverted neutrino mass spectrum, i.e., mν3 < mν1 ,mν2 .

2. m2
ν2

/∆m2
23 = (1+2t212+t412−rt412)

2

4t212(1+t212)(1+t212−rt212) cos2 φν
− tan2 φν

(r = ∆m2
21/∆m2

23, t12 = tan θ12),

where φν is an independent phase.

3. δ = arg(Y ν
4 ) − φν = −φν .

4. sin θ13 " me/
√

2mµ " 3.4 × 10−3 and tan θ23 " 1 − (me/
√

2mµ)2 = 1 − O(10−5).

5. Prediction of < mee >.

tan θ12 = 0.68, ∆m2
21 = 6.9 × 10−5 eV2 and ∆m2

23 = 2.5 × 10−3 eV2.

sin2 θ12 = 0.3 and ∆m2
21 = 6.9 × 10−5 eV2

∆m2
23 = 1.4, 2.3 and 3.0 × 10−3 eV2

8
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How is the SUSY Flavor problem so)ened?

A. CP violations induced by the so) terms

φ(x, y) → φ′(x, y) = Q̃2N φ(x, y), Q̃2N ∈ Q2N

DN ⊂ S0(3)

det R̃N = det P̃D → 1

Q2N ⊂ SU(2)

det R̃2N = det P̃Q = 1

(θN = 2π/N)

Q6

2k =


real for k = even

pseudoreal for k = odd

21 × 22 = 1−,3 + 1−,1 + 21 x1

x2

 ×

 a1

a2

 = (x1a2 + x2a1) (x1a1 − x2a2)

 x1a1 + x2a2

x1a2 − x2a1

 .

∆LL,RR = U †
L,R m̃2

LL,RR UL,R = real

∆LR = U †
aL m̃2

LR UR = real

7

and spontaneous CP

Phase alignmen$

φ(x, y) → φ′(x, y) = Q̃2N φ(x, y), Q̃2N ∈ Q2N

DN ⊂ S0(3)

det R̃N = det P̃D → 1

Q2N ⊂ SU(2)

det R̃2N = det P̃Q = 1

(θN = 2π/N)

Q6

2k =


real for k = even

pseudoreal for k = odd

21 × 22 = 1−,3 + 1−,1 + 21 x1

x2

 ×

 a1

a2

 = (x1a2 + x2a1) (x1a1 − x2a2)

 x1a1 + x2a2

x1a2 − x2a1

 .

∆LL,RR = U †
L,R m̃2

LL,RR UL,R = real

∆LR = U †
aL m̃2

LR UR = real

7
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The most stringent constraints
coming 1om EDMs are satisfied.

B. FCNCs induced by the so) terms



Exp. bound Q6 Model

|(δl
12)LL| 4.0 × 10−5 m̃2

l̃
4.8 × 10−3∆L

|(δl
12)RR| 9 × 10−4 m̃2

l̃
8.4 × 10−8∆e

|(δl
13)LL| 2 × 10−2 m̃2

l̃
1.710−5∆L

|(δl
23)LL| 2 × 10−2 m̃2

l̃
8.4 × 10−8∆L

|(δl
23)LL(δd

13)LL| 1 × 10−4 m̃2
l̃

1.4 × 10−12
√

∆L∆e

|(δl
23)LL(δl

13)RR| 2 × 10−5 m̃q̃ 5 × 10−9
√

∆L∆e

|(δl
23)RR(δl

13)RR| 9 × 10−4 m̃2
l̃

8.3 × 10−8
√

∆L∆e

|(δl
23)RR(δl

13)LL| 2 × 10−5 m̃2
l̃

2.4 × 10−11
√

∆L∆e

|(δl
12)LR| 8.4 × 10−7 m̃2

l̃
∼ 10−6m̃−1

l̃|(δl
13)LR| 1.7 × 10−2 m̃2

l̃
∼ 10−7m̃−1

l̃|(δl
23)LR| 1 × 10−2 m̃2

l̃
∼ 10−9m̃−1

l̃

Table 2: Experimental bounds on δ’s, where the parameter m̃l̃ denote ml̃/100
GeV.

2

Lepton sector

1. Inverted neutrino mass spectrum, i.e., mν3 < mν1 ,mν2 .

2. m2
ν2

/∆m2
23 = (1+2t212+t412−rt412)

2

4t212(1+t212)(1+t212−rt212) cos2 φν
− tan2 φν

(r = ∆m2
21/∆m2

23, t12 = tan θ12),

where φν is an independent phase.

3. δCP = arg(Y ν
4 ) − φν = −φν .

4. sin θ13 " me/
√

2mµ " 3.4 × 10−3

tan θ23 " 1 − (me/
√

2mµ)2 = 1 − O(10−5).

5. Prediction of < mee >.

tan θ12 = 0.68, ∆m2
21 = 6.9 × 10−5 eV2 and ∆m2

23 = 2.5 × 10−3 eV2.

sin2 θ12 = 0.3 and ∆m2
21 = 6.9 × 10−5 eV2

∆m2
23 = 1.4, 2.3 and 3.0 × 10−3 eV2

me

mµ

memµ

m2
τ

8

(Kobayashi, Terao and Kubo, ’04)



Exp. bound Q6 Model√
|Re(δd

12)
2
LL,RR| 4.0 × 10−2 m̃q̃ (LL)1.2 × 10−4∆Q, (RR)1.7 × 10−1∆d√

|Re(δd
12)LL(δd

12)RR| 2.8 × 10−3 m̃q̃ 4.5 × 10−3
√

∆Q∆d√
|Re(δd

12)
2
LR| 4.4 × 10−3 m̃q̃ ∼ 10−4m̃−1

q̃√
|Re(δd

13)
2
LL,RR| 9.8 × 10−2 m̃q̃ (LL)7.9 × 10−3∆Q, (RR)1.4 × 10−1∆d√

|Re(δd
13)LL(δd

13)RR| 1.8 × 10−2 m̃q̃ 3.4 × 10−2
√

∆Q∆d√
|Re(δd

13)
2
LR| 3.3 × 10−3 m̃q̃ ∼ 10−4m̃−1

q̃√
|Re(δu

12)
2
LL,RR| 1.0 × 10−1 m̃q̃ (LL)1.2 × 10−4∆Q, (RR)4.4 × 10−4∆u√

|Re(δu
12)LL(δu

12)RR| 1.7 × 10−2 m̃q̃ 2.3 × 10−4
√

∆Q∆u√
|Re(δu

12)
2
LR| 3.1 × 10−3 m̃q̃ ∼ 10−4m̃−1

q̃

|(δd
23)LL,RR| 8.2 m̃2

q̃ (LL)1.6 × 10−2∆Q, (RR)4.7 × 10−1∆d

|(δd
23)LR| 1.6 × 10−2 m̃2

q̃ ∼ 10−2m̃−1
q̃

Table 1: Experimental bounds on δ’s, where the parameter m̃q̃ denote mq̃/500
GeV.

1

Quark sector

(Kajiyama)
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φ(x, y) → φ′(x, y) = Q̃2N φ(x, y), Q̃2N ∈ Q2N

DN ⊂ S0(3)

det R̃N = det P̃D → 1

Q2N ⊂ SU(2)

det R̃2N = det P̃Q = 1

(θN = 2π/N)

Q6

2k =


real for k = even

pseudoreal for k = odd

21 × 22 = 1−,3 + 1−,1 + 21 x1

x2

 ×

 a1

a2

 = (x1a2 + x2a1) (x1a1 − x2a2)

 x1a1 + x2a2

x1a2 − x2a1

 .

∆LL,RR = U †
L,R m̃2

LL,RR UL,R = real

∆LR = U †
aL m̃2

LR UR = real

MH > 5 TeV

7

φ(x, y) → φ′(x, y) = Q̃2N φ(x, y), Q̃2N ∈ Q2N

DN ⊂ S0(3)

det R̃N = det P̃D → 1

Q2N ⊂ SU(2)

det R̃2N = det P̃Q = 1

(θN = 2π/N)

Q6

2k =


real for k = even

pseudoreal for k = odd

21 × 22 = 1−,3 + 1−,1 + 21 x1

x2

 ×

 a1

a2

 = (x1a2 + x2a1) (x1a1 − x2a2)

 x1a1 + x2a2

x1a2 − x2a1

 .

∆LL,RR = U †
L,R m̃2

LL,RR UL,R = real

∆LR = U †
aL m̃2

LR UR = real

MH > 5 TeV ∆MBd
, ∆MK

7

FCNCs mediated by the neutral Hi*ses
at the tree level

(one + two neutral scaler Hi*ses and 
two pseudo scaler Hi*ses )

(Okada, Sakamaki and Kifune)



IV. Conclusio!

“Low-energy discrete Flavor Symmetry”

constrains the flavor structure of the SM,
reducing the number of the redundan$
parameters of the SM.

so)ens the SUSY flavor problem.
No assumption on the universality of the so3 
terms is needed.


