28-NOV-2003 @TMU

Solar Neutrino Results from SNO Salt Phase

Yasuo Takeuchi Kamioka Observatory, ICRR, Univ. of Tokyo

SNO Detector Neutron Event Separation Calibration Backgrounds Results from Salt Phase Future Plan

SNO web site: http://www.sno.phy.queensu.ca/

The Solar Neutrino Problem

SNO CC vs NC implies flavor change, which can then explain other experimental results.

Precision phase (still need direct evidence of "oscillation"…)

Sudbury Neutrino Observatory (SNO)

Main goal:

Direct observation of solar neutrino flavor change via inclusive appearance with high precision

T. Kutter, C.W. Nally, S.M. Oser, C.E. Waltham University of British Columbia

J. Boger, R.L. Hahn, R. Lange, M. Yeh Brookhaven National Laboratory

 A.Bellerive, X. Dai, F. Dalnoki-Veress, R.S. Dosanjh, D.R. Grant, C.K. Hargrove, R.J. Hemingway, I. Levine, C. Mifflin, E. Rollin, O. Simard, D. Sinclair, N. Starinsky, G. Tesic, D. Waller
 Carleton University

P. Jagam, H. Labranche, J. Law, I.T. Lawson, B.G. Nickel, R.W. Ollerhead, J.J. Simpson University of Guelph

> J. Farine, F. Fleurot, E.D. Hallman, S. Luoma, M.H. Schwendener, R. Tafirout, C.J. Virtue Laurentian University

Y.D. Chan, X. Chen, K.M. Heeger, K.T. Lesko, A.D. Marino, E.B. Norman, C.E. Okada, A.W.P. Poon, S.S.E. Rosendahl, R.G. Stokstad Lawrence Berkeley National Laboratory

M.G. Boulay, T.J. Bowles, S.J. Brice, M.R. Dragowsky, S.R. Elliott, M.M. Fowler, A.S. Hamer, J. Heise, A. Hime, G.G. Miller, R.G. Van de Water, J.B. Wilhelmy, J.M. Wouters Los Alamos National Laboratory

S.D. Biller, M.G. Bowler, B.T. Cleveland, G. Doucas, J.A. Dunmore, H. Fergani, K. Frame, N.A. Jelley, S. Majerus, G. McGregor, S.J.M. Peeters, C.J. Sims, M. Thorman, H. Wan Chan Tseung, N. West, J.R. Wilson, K. Zuber Oxford University

E.W. Beier, M. Dunford, W.J. Heintzelman, C.C.M. Kyba, N. McCauley, V.L. Rusu, R. Van Berg University of Pennsylvania

S.N. Ahmed, M. Chen, F.A. Duncan, E.D. Earle, B.G. Fulsom,
H.C. Evans, G.T. Ewan, K. Graham, A.L. Hallin, W.B. Handler,
P.J. Harvey, M.S. Kos, A.V. Krumins, J.R. Leslie,
R. MacLellan, H.B. Mak, J. Maneira, A.B. McDonald, B.A. Moffat,
A.J. Noble, C.V. Ouellet, B.C. Robertson,
P. Skensved, M. Thomas, Y.Takeuchi

D.L. Wark Rutherford Laboratory and University of Sussex

R.L. Helmer

A.E. Anthony, J.C. Hall, J.R. Klein University of Texas at Austin

T.V. Bullard, G.A. Cox, P.J. Doe, C.A. Duba, J.A. Formaggio, N. Gagnon, R. Hazama, M.A. Howe, S. McGee,
K.K.S. Miknaitis, N.S. Oblath, J.L. Orrell, R.G.H. Robertson, M.W.E. Smith, L.C. Stonehill, B.L. Wall, J.F. Wilkerson University of Washington

SNO Detector

SNO during Construction

Reconstructed Event

event vertex
event direction
energy
isotropy

Neutrino Reactions in SNO

$$cc \quad v_e + d \rightarrow p + p + e^-$$

- Q = 1.445 MeV

- good measurement of ν_{e} energy spectrum
- some directional info $\propto (1 1/3 \cos \theta)$

- v_e only

NC
$$\nu_x + d \rightarrow p + n + \nu_x$$

- Q = 2.22 MeV

- measures total ⁸B v flux from the Sun

- equal cross section for all ν types

$$\mathbf{ES} \quad \mathbf{v}_x + \mathbf{e}^- \to \mathbf{v}_x + \mathbf{e}^-$$

- low statistics
- mainly sensitive to $\nu_e,$ some ν_μ and $\,\nu_\tau$
- strong directional sensitivity

SNO's response to neutron events Image: SNO's response to neutron events (solar NC signal) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006

Neutron Event Separation

Detecting Neutrons

Pure D₂O: neutron capture on deuterons

• Salt D₂O: neutron capture on ³⁵Cl

Simulated Neutron Event

Pure D_2O

more isotropic than electrons

look like electron events

Hit PMTs

$$\begin{split} \beta_1 &= \frac{2}{N(N-1)} \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} \cos\theta_{ij} \\ \beta_4 &= \frac{2}{N(N-1)} \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} \frac{1}{64} (9 + 20\cos 2\theta_{ij} + 35\cos 4\theta_{ij}) \\ \beta_{14} &= \beta_1 + 4\beta_4 \end{split}$$

Harmonic Beta Parameters

Isotropy Calibration

Calibration sources show excellent agreement between data and Monte Carlo.

Uncertainty on Neutrino Fluxes

Source	NC uncert.	CC uncert.	ES uncert.
	(%)	(%)	(%)
Energy scale	-3.7,+3.6	-1.0,+1.1	±1.8
Energy resolution	±1.2	±0.1	±0.3
Energy non-linearity	± 0.0	-0.0,+0.1	± 0.0
Radial accuracy	-3.0,+3.5	-2.6,+2.5	-2.6,+2.9
Vertex resolution	±0.2	± 0.0	±0.2
Angular resolution	±0.2	±0.2	±2.4
<u>Isotropy mean</u> †	-3.4,+3.1	-3.4,+2.6	-0.9,+1.1
Isotropy resolution	±0.6	± 0.4	±0.2
Radial energy bias	-2.4,+1.9	±0.7	-1.3,+1.2
Vertex Z accuracy †	-0.2, +0.3	±0.1	±0.1
Internal background neutrons	-1.9,+1.8	± 0.0	± 0.0
Internal background γ 's	±0.1	±0.1	± 0.0
Neutron capture	-2.5,+2.7	± 0.0	±0.0
Cherenkov backgrounds	-1.1,+0.0	-1.1,+0.0	± 0.0
"AV events"	-0.4,+0.0	-0.4,+0.0	±0.0
Total experimental uncertainty	-7.3,+7.2	-4.6,+3.8	-4.3,+4.5
Cross section [13]	±1.1	±1.2	±0.5

Calibration

Calibration

Use detailed Monte Carlo to simulate events

 Check simulation with large number of calibrations:

Calibration	Simulates
Pulsed Laser	337-620 nm optics
¹⁶ N	6.13 MeV γ (+4MeVβ)
²⁵² Cf	neutrons
⁸ Li	<13 MeV β decay
AmBe	4.4 MeV (γ ,n) source
U & Th Sources	²¹⁴ Bi & ²⁰⁸ TI (β,γ)
Radon Spike	Rn backgrounds

Tools for calibration

Manipulator demonstration @Queen's Univ.

Laser ball

glove box in DCR

Optical Calibration

- The PMT angular response and attenuation lengths of the media are measured directly using laser+diffuser *("laserball")*.
- Attenuation for D_2O and H_2O , as well as PMT angular response, also measured in-situ using radial scans of the laserball.
- Exhibit a change as a function of time after salt was added to the detector.

Vertex reconstruction of ¹⁶N events

Energy Response from ¹⁶N Calibration Source:1

- Energy response of the detector determined from ¹⁶N decay.
- Mono-energetic γ at 6.13 MeV, accompanied by tagged β decay.
- Provides check on the optical properties of the detector.
- Energy scale is changing

Mean RSP Energy vs Julian Date

Energy Response from ¹⁶N Calibration Source:2

Energy scale drift

- HV drift
- Gain drift
- Threshold drift
- Attenuation changes
- Concentrator degradation

Radial, temporal, and rate dependencies well modeled by Monte Carlo.

Energy Response

- In addition to ${}^{16}N(\gamma)$, additional calibration sources are employed to understand energy response of the detector.
 - Muon followers (neutron)
 - ²⁵²Cf (neutron)
 - ⁸Li (β)
 - •••

.

.

Excellent agreement!

Systematics dominated by source uncertainties, optical models, and radial/asymmetry distributions

Energy Scale = $\pm 1.1\%$

Energy Resolution = \pm 3.5%

Neutron Response

- Use neutron calibration sources (²⁵²Cf and AmBe) to determine capture profile for neutrons.
- ²⁵²Cf decays by a emission or spontaneous fission. (3.768 <u>+</u> 0.005 neutrons/fission)
- Observe resulting γ cascade from neutron capture on ³⁵Cl.
- γ' s accompanying the fission and β 's emitted by daughter products are removed using a timing cut.
- Monte Carlo agrees well with observed distributions.

Neutron Capture Efficiency in SNO

Uncertainty of neutron capture efficiency on flux (Salt) = -2.5+2.7%(NC)

Backgrounds

Backgrounds

 Highly sensitive to any Thorium ²³²Th γ above neutral current (2.2 MeV) threshold. ²²⁸Ac ²²⁸Ra ²⁸Th ²²⁴Ra ²²⁴Fr $3.27 \text{ MeV } \beta$ ²²⁰Rn 2.445 MeV y ²¹⁶Po 2.615 MeV γ ²¹²Po ²¹²Bi ²¹²Pb 208P 208

Measuring U/Th

• In-situ:

<u>Old Backgrounds, New Technique:</u> <u>Radon `Spikes'</u>

- Controlled radon spike added to D_2O to measure behavior of low-energy backgrounds.
- 80 Bq of Rn slowly mixed in heavy water.

.

New Backgrounds

- Salt and heightened neutron sensitivity introduces new/increased backgrounds in salt phase.
 - ²⁴Na from neck of vessel.
 - Cosmic rays
 - Atmospheric neutrinos, Fission
 - *"External"* (α,n) reactions on carbon and oxygen in acrylic vessel
- Use radial profile to explicitly fit for external neutron, regardless of source.

Summary of Backgrounds

Source	No. Events
Deuteron photodisintegration	73.1 +24.0,-25.5
2 H(α , α)pn	2.8 +/- 0.7
^{17,18} O(α,n)	1.4 +/- 0.9
Fission, atmospheric v' s	23.0 +/- 7.2
Terrestrial and reactor ν 's	2.3 +/- 0.8
Neutrons from rock	<1
²⁴ Na activation	8.4 +/- 2.3
Neutrons from CNO ν 's	0.3 +/- 0.3
Total internal neutrons	111.3 +/- 25
Internal γ (fission, atm. v)	5.2 +/- 1.3
¹⁶ N decays	< 2.5 (68% CL)
External-source neutrons (from fit)	84.5 +/- 34
Cherenkov events from β - γ decays	<14.7 (68% CL)
"AV events"	< 5.4 (68% CL)

Results from Salt Phase

Signal Extraction for Salt

neutrons

Events per 500 keV

500

400

300

200

100

(nucl-ex/0309004)

Kinetic Energy

10

11

(c)

13

T_{eff} (MeV)

14

Data from July 26, 2001 to Oct. 10, 2002

- 254.2 live days
- Blind analysis performed
- 3055 candidate events:

+23.9

-20,1

Flux Measurements

Unconstrained Flux:

$$\Phi_{cc} = 1.59^{+0.08}_{-0.07} (\text{stat})^{+0.06}_{-0.08} (\text{syst})$$

$$\Phi_{ES} = 2.21^{+0.31}_{-0.26} (\text{stat}) \pm 0.10 (\text{syst})$$

$$\Phi_{NC} = 5.21 \pm 0.27 (\text{stat}) \pm 0.38 (\text{syst})$$

$$\Phi_{cc} = 1.70 \pm 0.07 \text{ (stat)}^{+0.09}_{-0.10} \text{ (syst)}$$

$$\Phi_{ES} = 2.13^{+0.29}_{-0.28} \text{ (stat)}^{+0.15}_{-0.08} \text{ (syst)}$$

$$\Phi_{NC} = 4.90 \pm 0.24 \text{ (stat)}^{+0.29}_{-0.27} \text{ (syst)}$$

 * in units of 10⁶ cm⁻² s⁻¹

Constrained Flux:

Total Active ⁸B Fluxes

⁸ B BPB01 SSM	5.05 (1+0.20-0.16)x 10 ⁶ cm ⁻² s ⁻¹
NC Pure D ₂ O	
Constrained	5.09 (1 ± 0.13) x 10 ⁶ cm ⁻² s ⁻¹
NC Salt	
Unconstrained	5.21 (1 ± 0.09) × 10 ⁶ cm ⁻² s ⁻¹

•Consistent with pure D₂O. •Experimental error on ⁸B flux was reduced.

Oscillation Analysis: Only SNO

Oscillation Analysis: Solar Global

Oscillation Analysis: Solar + KamLAND

Results from SNO -- Salt Phase

Oscillation Parameters, 2-D joint 1- σ boundary $\Delta m^2 = 7.1^{+1.2}_{-0.6} \times 10^{-5} \text{ eV}^2$ $\theta = 32.5^{+2.4}_{-2.3} \text{ deg}$

Marginalized 1-D 1- σ errors $\Delta m^2 = 7.1^{+1.0}_{-0.3} \times 10^{-5} \text{ eV}^2$ Maximal mixing rejected $\theta = 32.5^{+1.6}_{-1.7} \text{ deg}$ at 5.4 σ

Analyses of energy spectrum & day/night with full Salt data set is on going.

Future Plan

Salt Removal (Sept. ~ Oct., 2003)

- Salt was removed using a reverse osmosis unit, which produces a concentrated brine.
- The target is for ~1ppm salt in the D_2O after multiple (3-4) passes through the unit.
- SNO will move to the third phase of the experiment.

Salt removal has been completed.

SNO Phase III (NCD Phase)

➢ ³He Proportional Counters ("NC Detectors")

40 Strings on 1-m grid

440 m total active length

Detection Principle

 ${}^{2}\text{H} + \nu_{x} \rightarrow p + n + \nu_{x} - 2.22 \text{ MeV} \quad (\text{NC})$ ${}^{3}\text{He} + n \rightarrow p + {}^{3}\text{H} + 0.76 \text{ MeV}$

Physics Motivation

Event-by-event separation. Measure NC and CC in separate data streams.

Different systematic uncertainties than neutron capture on NaCl.

NCD array removes neutrons from CC, calibrates remainder. CC spectral shape.

Why Event-by-Event?

	Pha	Phase III Projected	
Source	Δ CC/CC (%)	∆NC/NC (%)	∆NC/NC (%)
Energy Scale ¶	-4.2, +4.3	-6.2, +6.1	0.0
Energy Resolution ¶	-0.9, +0.0	-0.0, +4.4	0.0
Energy Non-linearity ¶	±0.1	± 0.4	0.0
Vertex Resolution ¶	± 0.0	±0.1	0.0
Vertex Accuracy	-2.8, +2.9	±1.8	0.0
Angular Resolution	-0.2, +0.2	-0.3, +0.3	0.0
Internal Source p-d ¶	± 0.0	-1.5, +1.6	3.0
External Source p-d ¶	±0.1	-1.0, +1.0	1.0
D2O Cherenkov ¶	-0.1, +0.2	-2.6, +1.2	0.0
H2O Cherenkov	± 0.0	-0.2, +0.4	0.0
AV Cherenkov	± 0.0	-0.2, +0.2	0.0
PMT Cherenkov ¶	±0.1	-2.1, +1.6	0.0
Neutron Capture	±0.0	-4.0, +3.6	3.0
Σ Systematic	-5.2, +5.2	2 -8.5, +9.1	4.5
Σ Statistical	-2.8, +3.4	-8.5, +8.6	4
Σ Uncertainties	7	12	6
¶ CC NC anti-correlation			

Current Status of the NCD Project

Milestones

Miles	corros			
Coun	ter construction complete	e Dor	ne	
Radio	assays complete	Apr	il 2001	
NCD	in-situ background test	Sep	2000	-
<mark>Neutr</mark> From	on Background Estimates radio assay:	< 4.0%	SSM	Ę
Sche	dule			
Routi	ne data taking+analysis	Ongo	ping	
Training for NCD installation Complete		CAUTION		
Salt removal Complete		A		
Deplo	oyment of NCD array	Ong	going	T
	NCD Phase Begins	'04		N

SNO has measured total active ⁸B flux precisely, then apply tight constraints on the oscillation parameters.

Total active ⁸B flux = 5.21 (1±0.09)x 10⁶ cm⁻² s⁻¹

$$\Delta m^2 = 7.1^{+1.0}_{-0.3} \times 10^{-5} \text{ eV}^2$$

$$\theta = 32.5^{+1.6}_{-1.7} \text{ deg}$$
(1D)

- Some new analyses with full Salt data set are on going.
- · Neutral Current Detectors are now under deployment.
 - SNO Phase-III (NCD) will start in January 2004.

Supplements

(a,n) Reactions

$$\label{eq:Hamiltonian} \begin{array}{rcl} {}^{2}\mathrm{H} + \alpha & \rightarrow & n + {}^{1}\mathrm{H} - 2.223 \ \mathrm{MeV}, \\ {}^{13}\mathrm{C} + \alpha & \rightarrow & n + {}^{16}\mathrm{O} + 2.215 \ \mathrm{MeV}, \\ {}^{17}\mathrm{O} + \alpha & \rightarrow & n + {}^{20}\mathrm{Ne} + 0.5871 \ \mathrm{MeV}, \\ {}^{18}\mathrm{O} + \alpha & \rightarrow & n + {}^{21}\mathrm{Ne} - 0.689 \ \mathrm{MeV}. \end{array}$$

	$1 \ \mu g \ U$	$1 \ \mu \text{g Th}$	per decay	per decay
	/у	/у	222 Rn ^a	210 Po (5.30)
$^{2}\mathrm{H}(\alpha,\alpha\mathrm{n})^{1}\mathrm{H}$	0.80	1.9	$205 \ge 10^{-8}$	0
$^{\rm nat}C(\alpha,n)^{16}O$				$10 \ge 10^{-8}$
${}^{17}O(\alpha, n)^{20}Ne$	0.021	0.008	$3.2 \ge 10^{-8}$	$0.6 \ge 10^{-8}$
$^{nat}O(\alpha,n)^{20,21}Ne$			$32 \ge 10^{-8}$	$6.0 \ge 10^{-8}$
$^{\mathrm{enr}}\mathrm{O}(\alpha,\mathbf{n})^{20,21}\mathrm{Ne}$			$51 \ge 10^{-8}$	$9.6 \ge 10^{-8}$
Acrylic				$6.6 \ge 10^{-8}$
Water (D_2O)			$34 \ge 10^{-8}$	$6.4 \ge 10^{-8}$
Water (H_2O)			$21 \ge 10^{-8}$	$4.0 \ge 10^{-8}$

^a (5.49 + 6.00 + 7.69) alphas.

Backgrounds

Source	Events
D ₂ O photodisintegration	$73.1^{+24.0}_{-23.5}$
2 H(α, α)pn	2.8 ± 0.7
$^{17,18}O(\alpha,n)$	1.4 ± 0.9
Fission, atmospheric v (NC +	
sub-Cherenkov threshold CC)	23.0 ± 7.2
Terrestrial and reactor $\bar{\nu}$'s	2.3 ± 0.8
Neutrons from rock	≤ 1
²⁴ Na activation	8.4 ± 2.3
<i>n</i> from CNO <i>v</i> 's	0.3 ± 0.3
Total internal neutron background	$111.3^{+25.3}_{-24.9}$
Internal γ (fission, atmospheric ν)	5.2 ± 1.3
¹⁶ N decays	< 2.5 (68% CL)
External-source neutrons (from fit)	$84.5^{+34.5}_{-33.6}$
Cherenkov events from $\beta - \gamma$ decays	< 14.7 (68% CL)
"AV events"	< 5.4 (68% CL)

For the unconstrained fits...

Correlation coefficients:

$$\rho_{\rm CC,NC} = -0.521$$

$$\rho_{\rm CC,ES} = -0.156$$

$$\rho_{\rm ES,NC} = -0.064$$

CC, ES, and NC fluxes from Pure D₂O Phase

Shape of ⁸B spectrum in CC and ES not constrained:

$$\phi_{\rm NC}^{\rm SNO} = 6.42^{+1.57}_{-1.57}(\text{stat})^{+0.55}_{-0.58}(\text{syst})$$

Standard (Ortiz et al.) shape of ⁸B spectrum in CC and ES:

$$\phi_{\rm CC}^{\rm SNO} = 1.76^{+0.06}_{-0.05}(\text{stat})^{+0.09}_{-0.09}(\text{syst}),$$

$$\phi_{\rm ES}^{\rm SNO} = 2.39^{+0.24}_{-0.23}(\text{stat})^{+0.12}_{-0.12}(\text{syst}),$$

$$\phi_{\rm NC}^{\rm SNO} = 5.09^{+0.44}_{-0.43}(\text{stat})^{+0.46}_{-0.43}(\text{syst})$$

5N 0

Extracting Signals

Can use derived observables (R^3 , $\cos\theta_{sun}$, and E) to produce pdfs.

0.08

0.2

0.1

0

-1

о

CC Energy 0.04 Distribution 0.02 o 10 5 Radial 0.04 0.03 Distribution 0.02 $(R^3, R_{AV}=1)$ 0.01 0 o 1

0.1

<u>ES</u>

Solar Direction Distribution

NC

15

Covariances between Isotropy and Energy actually require 2D PDFs

1800

10

No. NC Events

Statistical Signal Separation (D20

phase analysis)

•Signal PDFs used for statistical separation

Shape Constrained Signal Extraction Results

(Pure D2O phase)

External ²⁴Na

The NaCl brine in the underground buffer tank was activated by neutrons from the rock wall. We observed the decay of ²⁴Na after the brine is injected in the SNO detector.

Background Measurements in Salt Phase

- A hot Th source is used to photodisintegrate the deuteron. The resulting neutrons activate the ²³Na nuclei in the salt
- Used to test the low energy response of the detector, and to calibrate the light isotropy parameters used in the low energy background in-situ analysis
- Used to trace the water flow pattern in the ex-situ assay of radioactive backgrounds

Neutral Currents in the First Phase

Making the NC Measurement

• Flavor change occurs, CC flux ~ 1/3 as large

• Detector is clean enough, backgrounds are tolerable

Still hard because:

• Need good measurement of low energy radioactivity

• Need to understand all sources of neutrons other than v's

SNO Phase II (Salt Phase)

Challenges of NaCl: Backgrounds New (and Old) Instrumental Background

Narrow timing
 Cerenkov hit pattern

Even with looser isotropy cut for salt phase, preliminary upper limit on residual contamination still lower than a few events.

