Recent results of KamLAND

Hiroshi Ogawa Tohoku University 11/28,2003 14th Neutrino Workshop

Contents

- KamLAND detector
- Reactor neutrino observation
- Search for electron anti-neutrino from the sun

Scintillator Anti-Neutrino Detector

• Future plan

KamLAND : Kamioka Liquid scintillator Anti-Neutrino Detector

Physics Motivation

Reactor electron anti-neutrinos Geo electron anti-neutrinos → Solar anti-neutrinos 7Be solar neutrinos **Other anti-neutrino sources SN** neutrinos **Relic neutrinos** KamLAND advantage: high energy resolution low threshold ~0.9MeV ~0.3MeV (in the future) low background condition

KamLAND Collaboration

•Tohoku University: K.Eguch, S.Enomoto, K.Furuno, J.Goldman, H.Hanada, H.Ikeda, K.Ikeda, K.Inoue, K.Ishihara, W.Itoh, T.Iwamoto, T.Kawaguchi, T.Kawashima, H.Kinoshita, Y.Kishimoto, M.Koga, Y.Koseki, T.Maeda, T.Mitsui, M.Motoki, K.Nakajima, M.Nakajima, T.Nakajima, H.Ogawa, T.Sakabe, I.Shimizu, J.Shirai, F.Suekane, A.Suzuki, K.Tada, O.Tajima, T.Takayama, K.Tamae,H.Watanabe
•University of Alabama: J.Busenitz, Z.Djurcic, K.McKinny, D-M.Mei, A.Piepke, E.Yakushev
•LBNL Berkeley: B.E.Berger, Y.D.Chan, M.P.Decowski, D.A.Dwyer, S.J.Freedman, Y.Fu, B.Fujikawa, K.M.Heeger, K.T.Lesko, K-B.Luk, H.Murayama, D.R.Nygren, C.E.Okada, A.W.Poon, H.M.Steiner, L.A.Winslow
•California Institute of Technology: G.A.Horton-Smith, R.D.McKeown, J.Ritter, B.Tipton, P.Vogel
•Drexel University: C.E.Lane, T.Miletic
•University of Hawai Manoa: P.W.Gorham, G.Guilian, J.G.Leanned, J.Maricic, S.Matsuno, S.Pakvasa
•Louisiana State University: S.Dazeley, S.Hatakeyama, M.Murakami, R.C.Svoboda
•University of New Mexico: B.D.Dieterle, M.DiMauro
•Stanford University: J.Detwieler, G.Gratta, K.Ishii, N.Tolich, Y.Uchida
•University of Tennessee: M.Batygov, W.Bugg, H.Cohn, Y.Efremenko, Y.Kamyshkov, A.Kozlov, Y.Nakamura
•TUNL/ NCSU: L.De Braeckeleer, C.R.Gould, H.J.Karwowski, D.M.Markoff, J.A.Messimore, K.Nakamura, R.M.Rohm, W.Tornow, A.R.Young
•IHEP Beijing: Y-F.Wang

KamLAND experiment LAND

LS

80% dodecane 20% pseudocumene (1,2,4 Trimethylbenzene) 1.52g/I PPO (2,5-Diphenyloxazole)

 $\Box
ho = 0.78 extrm{g/cm}^3$ 8,000 photons/MeV

λ ~10m

BO

50% dodecane 50% isoparaffin $\Box \rho_{LS} \Box \rho_{BO} = 1.0004$

• $\overline{v_e}$ detection in liquid scintillator

$$\overline{v}_e + p \rightarrow n + e^+$$

• prompt part : e⁺

$$E_{vis} = E_{ve} - (\Delta m_{np} + m_e) - T_n(\theta) + 2m_e$$

= $E_{ve} - 0.782 \text{MeV} - T_n(\theta)$

• delayed part : γ (2.2MeV)

Reduce the background Powerfully ! • The Front-end Electronics

• Vertex Distribution

thermometer

• Liquid Scintillator Impurity

Impurities in the LS		Requirements Reactor Solar		
^{222}Rn	$0 \ 03 \ \mu Bq \ m^3$	$^{214}Bi \rightarrow ^{214}Po \ (\tau = 237 \mu s \)$		
^{238}U	$(3\ 5\ 0\ 5) \times 10^{-18} g\ g$	assume equilibrium	$10^{-13}g \ g$	$10^{-16}g \ g$
^{232}Th	$(5\ 2 \ 0\ 8) \times 10^{-17} g\ g$	$^{212}Bi \rightarrow ^{212}Po \ (\tau = 0 \ 431 \ \mu s \)$	$10^{-13}g \ g$	$10^{-16}g \ g$
${}^{40}K$	$< 2 \times 10^{-16} g \ g$	single rate	$10^{-14}g \ g$	$10^{-18}g~g$
^{85}Kr	$\sim 1 Bq m^3$	single rate/delayed coincidence		$1 \mu Bq m^3$
^{210}Pb	$\sim 100 mBq m^3$	single rate		$1 \ \mu Bq \ m^3$

Impurities on the Balloon			
$^{222}Rn ~~4~0 \times 10^{-4} Bq$	$^{238}U_{-3.1 \times 10^{-8}g}$ ~0.9g mine dust	^{232}Th 9 7 × 10 ⁻⁴ Bq ~0.1g mine dust	

• Spallation events after muon

Reactor neutrino observation LAND

• Past reactor experiment

- Many different experiments
 - Baselines up to 1km
 - No evidence for v disappearance

More than 100km baseline is necessary to explore the LMA solution

Powerful reactor, Big detector, Deep underground • Kamioka location

.6MeV

0.8

0.6

0.4

0.2

- Event selection
- (1) fiducial cutR < 5 m 3.46×10^{31} free protons(2) timing correlation $0.5 < dT < 660 \,\mu sec, \, \tau = 212 \,\mu sec$ (3) vertex correlation $|r_{prompt} r_{delayed}| < 1.6 m$ (4) delayed energy $1.8 < E < 2.6 \,MeV$ (5) thermometer cut_____

 $\sqrt{x^2 + y^2} > 1.2 \, m$

detection efficiency 78.3%

(6) spallation cut

all vol. $(dQ > 10^6 p.e.)$ or $L < 3 m (dQ < 10^6 p.e.)$ VETO for 2 sec

dead time 11.4 %

(7) energy threshold

 $E_{vis} > 2.6 \, MeV$

Endpoint energy of geo- $\bar{\nu}_e$ event is 2.5 MeV.

• Systematic errors

	0.9MeV	2.6MeV	/
Thermal Power	2.0	2.0	١.
Korean Reactors	0.25	0.25	10/
Other Reactors	0.35	0.35	5
Burn-up effect	1.0	1.0	
Long-life Nuclei	0.5	0.002	ţ
Time-lag of beta decay	, 0.3	0.3	
Neutrino Spectra	2.3	2.5] "
Cross section	0.2	0.2	
Total LS mass	2.1	2.1) 👸
Fiducial Volume Ratio	4.1	4.1	L L
Energy Threshold	-	2.1	}
Efficiency of Cuts	2.1	2.1	
Live Time	0.07	0.07)

Japanese reactors contribute ~97% of neutrino flux. Only electric power is known but contribution is ~2.5%. Contribution is only 0.7%. fraction of U235/U238/Pu239/Pu241 contribution of Ru106 and Ce144 <1 day time lag for an equilibrium PLB160(1985)325, PLB218(1989)365, PRC24(1981)1543 PRD60(1999)053003, PRC67(2003)035502 $1171 \pm 25 \, m^3$ vertex distribution of spallation neutron position 1.4%, time 0.6%, quench 1.02%, dark 0.4% ->1.91% capture time, space correlation, energy window

Total 6.0% 6.4%

• Reactor neutrino analysis result

4 Mar. – 6 Oct. 2002 145.1 live days (162 ton-year exposure)

Analysis threshold	2.6MeV	0.9MeV
Expected signal	86.8 ± 5.6	124.8 ± 7.5
BG	1 ± 1	2.9 ± 1.1
		(+9 geo neutrino)
Observed	54	86
	neutrino disappearance 99.95C.L.	
	R=0.611 ± 0.085(stat) ± 0.041(sys)	

Assuming CPT invariance : exclude except LMA exclude RSFP solution too.

• Future

• Analysis data update : seasonal variation

• Shika2 reactor will work at 88km -2006 : LMA1 or LMA2

• Reactor neutrino observation summary

KamLAND has observed an evidence for reactor neutrino disappearance at ~180km distance with 99.95% C.L.

 $R = 0.611 \pm 0.085 \pm 0.041$

Assuming CPT invariance, only the LMA solution is compatible with the deficit.

KamLAND is running on stable condition. KamLAND will give high sensitivity data to survey the LMA region.

Search for electron anti-neutrino Kfrom the sun LAND

• How make solar anti-neutrino ?

 V_e with a non-zero transition magnetic moment can evolve into $\overline{V_{\mu}}$, $\overline{V_{\tau}}$ while propagating through intense magnetic fields in the sun.

• Energy region for solar anti-neutrino

Energy spectrum of reactor neutrino and solar anti-neutrin

✓ Avoid BG by reactor ✓ Near of the ⁸B neutrino endpoint

• Event selection

```
Data: 4. Mar. – 1. Dec. 2002
Livetime: 185.5 days
```

Event selection criteria

spallation cut t < 2sec for dQ>10⁶ p.e. t < 2sec, dr(from muon track) < 3 m for dQ>10⁶ p.e. dead time 11.5%

vertex cut $R_p < 550$ cm, $R_d < 550$ cm (no thermometer cut) vertex correlation dL < 160 cm timing correlation 0.5 < dt < 660 µs energy cut delayed: 1.8 < E < 2.6 MeV <u>detection efficiency 84.1%</u> energy cut prompt: 7.5 < E < 14.0 MeV • Systematic errors

✓ Detection efficiency (ϵ) : 1.6 % space correlation R<550cm, dL<160cm : 1.6% time correlation $0.5 < dt < 660 \ \mu s$: 0.4% delayed energy $1.8 < E_d < 2.6 \text{ MeV}$: 0.1% ✓ Cross section (σ) : 0.2 % ✓ Number of target proton : 4.3 % total volume error 1171 +/- 25 m³ : 2.2% fiducial volume ratio R<550 cm : 3.7% ✓ Energy threshold : 4.3 % energy calibration is done by ¹²B beta decay \checkmark Livetime (T) : 0.07 % ✓ Total : 6.3 %

• Vertex calibration

with radioactive sources

Energy calibration with muon spallation

Assuming ⁸B neutrino shape : 4.3% error @ 7.5MeV threshold

• Expected background

✓ Reactor neutrino		: 0.2 +/- 0.2
	Ep > 7.5MeV, LMA regio	n
✓ Atmospheric	e neutrino	: 0.001
	T.K. Gaisser Phys. Rev. L	ett. 1985
✓ Fast neutron		: 0.3 +/- 0.2
	OD inefficiency 8% + pas	sing rock event
✓ Accidental c	oincidence	: 0.02
	pick up the off-timing even	nts $1 < dt < 10$ sec
✓ ⁸ He & ⁹ Li		: 0.6 +/- 0.2

✓ Total : 1.1 +/- 0.4

• Fast neutron

• ⁸He & ⁹Li

Total remaining BG = 0.6 +/- 0.2 for 7.5 < Ep < 14MeV

• Analysis result

No observed event !

• The v_e flux over the energy range 8.3-14.8 MeV (7.5 – 14 MeV for E_p)

> N_{signal}=1.58 : using the Feldman-Cousins method G.J.Feldman & R.D.Cousins, Phys. Rev. D57,3873(1998)

 $< 3.7 \times 10^2 \ cm^{-2} s^{-1}$ (90% C.L.)

Normalize to ⁸B solar neutrino flux

This energy window is containing 29.5% of the total flux of $5.05^{+1.01}_{-0.81} \times 10^{6}$ cm⁻²s⁻¹ (BP2000)

Neutrino conversion probability < 2.8 × 10⁻⁴ (90% C.L.)

X30 improvement of the previous best measurement ! hep-ex/0310047

• Interpretation by spin-flavor precession (1)

$$P(\nu_{eL} \to \bar{\nu}_{eR})$$

$$\simeq 1.8 \times 10^{-10} \sin^2 2\theta \left[\frac{\mu}{10^{-12} \mu_B} \frac{B_{\perp}(0.05 R_{\odot})}{10 \text{ kG}} \right]^2$$

Physics Letters B 553 (2003) 7–17

$$\frac{\mu}{10^{-12}\,\mu_B} \frac{B_T(0.05R_{sun})}{10kG} < 1.3 \times 10^3$$

If $B_T = 300 \text{kG}$, $\mu_v < 4.3 \times 10^{-11} \mu_B$

MUNU experiment : $\mu_{\overline{v_e}} < 1.0 \times 10^{-10} \,\mu_B (90\% C.L.)$

• Solar anti-neutrino summary

Future study house scintillator Anti-Neutrino Detector

• Toward ⁷Be solar neutrino detection

We need the purification again!

Impurities in LS

(²³⁸U: 3.5×10^{-18} g/g, ²³²Th: 5.2×10^{-17} g/g)

	$^{238}{ m U}$	$^{232}\mathrm{Th}$	
	$214_{\text{Bi}} \xrightarrow{\beta} 214_{\text{Po}} \xrightarrow{\alpha} 210_{\text{Pb}}$	$212_{\text{Bi}} \xrightarrow{\beta(64\%)} 212_{\text{Po}} \xrightarrow{\alpha} 208_{\text{Pb}}$	
decay mode	Q=5.5MeV 112=10445 Q=7.8MeV	Q=2.3MeV 112=0.345 Q=9.0MeV	
Fiducial	$R<4\mathrm{m},\;\rho>2\mathrm{m}$	$R<4\mathrm{m},\;\rho>2\mathrm{m}$	
$\Delta T (\Delta L \le 1 \mathrm{m})$	$5 - 1,000 \mu s$	0.4 - 1.0µs	
prompt E_{β}	$1.3 \mathrm{MeV} \leq$	1.0 - 2.0MeV	
delayed E_{α}	0.3 - 1.0 MeV	0.3 - 1.0 MeV	

²¹⁴ Bi-²¹⁴ Po coincidence

Impurities in LS

(⁴⁰K: $< 2.7 \times 10^{-16} \text{g/g}$, ²¹⁰Pb: $\sim 1 \times 10^{-20} \text{g/g}$)

	40 K	$210_{\rm Pb}$
decay mode	$\overset{40}{_{Q=2.3 \text{MeV}}} \xrightarrow{\text{EC}} \overset{40}{_{\text{Ar}}} \xrightarrow{^{\text{Y}}} \overset{1.46 \text{MeV}}{\xrightarrow{^{\text{HeV}}}} \overset{40}{_{\text{Ar}}}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Fiducial	R $<$ 4.0m, ρ $>$ 1.2m	$R < 4.0 { m m}, \ ho > 1.2 { m m}$
Energy cut	1.46 - 1.65 MeV	0.9 - 1.3 MeV

Impurities in LS (85 Kr: $0.7Bq/m^3$)

prompt $78 \leq E_{\beta} \leq 162 \text{keV}[*], 0.65 \leq \Delta T \leq 2.65 \mu \text{s in whole balloon}$

[*] Analyzed with the sum of hit PMTs

• How reduce the impurity?

Background	now	goal
238 U(by Bi-Po)	$3.5 imes 10^{-18} \mathrm{g/g}$	OK!!
$^{238}{ m U(by~^{234}Pa)}$	$O(10^{-15}g/g)(Max.)$	$10^{-18} { m g/g}$
232 Th (by Bi-Po)	$5.2 \times 10^{-17} \mathrm{g/g}$	OK!!
40 K	$2.7 imes10^{-16}\mathrm{g/g(max.)}$	$< 10^{-18} \text{g/g}$
²¹⁰ Pb	$\sim 10^{-20} { m g/g}$	$5 imes 10^{-25} \mathrm{g/g} \sim 1 \mu \mathrm{Bq/m^3}$
${}^{85}{ m Kr}, {}^{39}{ m Ar}$	85 Kr =0.7Bq/m ³	$1\mu Bq/m^3$
222 Rn	$^{238}\text{U} = 3.5 \times 10^{-18}\text{g/g}$	OK!! $(1\mu Bq/m^3)$
(after purification)	$= 3.3 \times 10^{-8} \mathrm{Bq/m^3}$	
222 Rn		$1 \mathrm{mBq/m^3}$
(during purification)		210 Pb = 0.5μ Bq/m ³ after decay

For ²¹⁰Pb & ⁴⁰K : water extraction update distillation

For ⁸⁵Kr & ³⁹Ar : nitrogen purge system update

For Rn protection : acryl cover for system main guard + fresh air blow

We start R&D for detection ⁷Be solar neutrinos on KamLAND !

Reactor Neutrinos

- Only 4 fissile nuclei (U235,U238,Pu239,Pu241) are important. The others contribute only 0.1% level.
- Fission fragments repeat beta-decay and emit anti-electron-neutrinos (electron-neutrino contamination is ~10ppm level above 1.8 MeV).
- Fission rate is strongly correlated with thermal ²³⁸U power output (measurable at much better than 2% accuracy).

 $^{235}U:201.7\pm0.6,\ ^{238}U:205.0\pm0.9,\ ^{239}Pu:210.0\pm0.9,\ ^{241}Pu:212.4\pm1.0MeV$

M.F.James, J.Nucl.Energy 23(1969)517

- One fission causes ~6 neutrino emission in average. Thus, neutrino intensity is $\sim 2 \times 10^{20} \bar{\nu}_e/GW_{th}/sec$.
- Fission spectra reach equilibrium within a day above ~2 MeV. Except only a few cases such as;

$$\begin{array}{c} {}^{106}Ru \xrightarrow{T_{1/2}=372 days} > Rh \xrightarrow{E_{\text{max}}=3.541 MeV} > Pd \\ {}^{144}Ce \xrightarrow{T_{1/2}=285 days} > Pr \xrightarrow{E_{\text{max}}=2.996 MeV} > Nd \end{array}$$

Neutrino Spectra

U235, Pu239, Pu241

Beta spectra were measured with a spectrometer irradiating thermal neutrons at ILL.

Fitting with 30 hypothetical beta branches and convert each branches to neutrino spectrum.

K.Schreckenbach et al., Phys.Lett.B160(1985)325 A.A.Hahn et al., Phys.Lett.B218(1989)365

U238

No fission with thermal neutrons

Theoretical calculation tracing 744 unstable fission products

Error is larger, but small contribution ~8% PVogel et al., Phys. Rev. C24(1981)1543

Knowing time evolution of fuel composition, error from spectra calculation is ~2.3%.

	0.9 MeV	2.6 MeV
Total B.G.	2.9 ± 1.1	1 ± 1

Another important B.G.

 ν_e from the earth has never been observed, before. If observed, it opens a new field of "Neutrino Geo-physics."

Validity of Spectra & Cross-section Calculation

Bugey measured an overall reaction rate with 1.4% accuracy and is in good agreement with the calculation.

Y.Declais et al., Phys.Lett.B338(1994)383

 $\sigma_f = 5.750 \times 10^{-43} cm^2 / fission \pm 1.4\%$ $\sigma_{V-A} = 5.824 \times 10^{-43} cm^2 / fission \pm 2.7\%$

$$\sigma_f / \sigma_{V-A} = 0.987 \pm 1.4\% \pm 2.7\%$$

Bugey-3 tested models of neutrino spectra and the ILL spectra shows excellent agreement. BAchkar et al, PhysLett.B374(1996)243

A few % precision is achievable without near detector for flux normalization.

Rn protection

revised 26 Feb., 2003

Th-series

U-series

