CMB温度揺らぎ観測の今後 及び東北大学3Kプロジェクト

服部 誠 (東北大学理学部天文学教室)

- 1 今後の観測が目指すサイエンス
- 2 今後の計画
- 3 東北大学3Kプロジェクト

1今後の観測計画が目指すサイエンス

Primary成分

密度揺らぎパワースペクトル詳細測定 によるinflaton potential への制限 $\frac{dn}{dk}$ n(inflaton)

$$\varepsilon_{\rm H} \equiv -\frac{\dot{H}}{H^2} \approx \varepsilon \equiv \frac{M_{pl}^2}{2} \left(\frac{V(\chi),_{\chi}}{V(\chi)}\right)^2$$

$$\eta \equiv M_{pl}^2 \frac{V(\chi)_{,\chi\chi}}{V(\chi)} \qquad \qquad \xi^2 \equiv M_{pl}^4 \frac{V_{,\chi}V_{,\chi\chi\chi}}{V^2}$$

例 Correlated isocurvature perturbation Moroi -Takahashi-Kawasaki model

$$u \equiv a \delta \phi \quad \text{@ spatially flat gauge}$$

揺らぎの発展方程式(moroton) 但し、 $V(\phi)_{,\phi\phi} << H_{inf}^2$
 $u'' + \left[k^2 - \frac{a''}{a}\right]u = 0$, ' ltconformal time (τ) 微分
 $\frac{a''}{a} \approx \frac{1}{\tau^2}(2 + \varepsilon_{\rm H})$, $\varepsilon_{\rm H} = -\frac{\dot{H}}{H^2} \approx \varepsilon = \frac{M_{pl}^2}{2} \left(\frac{V(\chi)_{,\chi}}{V(\chi)}\right)^2$
 $\therefore \qquad n_{\phi} = 1 - 2\varepsilon_{H}$

 $u \equiv a \delta \chi$ @ spatially flat gauge

揺らぎの発展方程式(inflaton)

$$u'' + \left[k^2 - \frac{z''}{z}\right]u = 0, \qquad z \equiv \frac{\chi_0}{H}$$

$$\eta_{H} \equiv -\frac{\chi_{0}}{H\chi_{0}} = \eta - \varepsilon, \qquad \eta = M_{pl}^{2} \frac{V(\chi)_{\chi\chi}}{V(\chi)}$$

 $\therefore n_{\chi} = 1 - 4\varepsilon_H + 2\eta_H$

• n_{ϕ}, n_{χ} が測定出来れば、 $|V(\chi),_{\chi}|$ と $V(\chi),_{\chi\chi}$ が測定できる。

 $V(\chi),_{\chi\chi} > 0$ $V(\chi),_{\chi\chi} < 0$

真空の相転移

Chaotic inflation

2.WMAP(TT+TE)+ ACBAR+2dF による制限

CosmoMC使用 Prior: 軽元素合成

Age top hat Hubble key project

10万サンプル

Parameters best fit & 1σ error ()

$$R_b = 0.179(0.052, 0.308)$$

$$n_s = 0.968(0.952, 0.979)$$

 $n_{\phi} = 1.03(0.875, 1.19)$

Correlated isocurvature の CMB温度揺らぎへの寄与は、67% confidence で9%以下

n_{ϕ} の意味ある制限が出来ない。

3. 高角度分解能観測による制限

$l = 901 - 3000 \quad \text{のデータをシミュレート}$ 仮定したパラメータ値 $C - ISO: R_b = 0.3, n_\phi = 0.97, A_s = 21.7,$ $n_s = 0.93, z_{re} = 12, \Omega_b h^2 = 0.0228,$ $\Omega_{dm} h^2 = 0.116, H_0 = 69.3$

l < 901 WMAP(TT、TE)の結果使用 2dF も使用

Prior

 $\Omega_b h^2 = 0.022 \pm 0.002, H_0 = 72 \pm 8$, Gaussian $t_0 = 10 - 20Gyr$ Top hat

実線 頻度分布 破線 likelihood

多少は気配が見える。 しかし、統計的には難しい。

テンソルモード
スピン = 2

$$d_{lm} \propto \begin{pmatrix} 0 & 0 & 0 \\ 0 & -X_{lm} / \sin \theta \sin \theta W_{lm} \\ 0 & \sin \theta W_{lm} & \sin \theta X_{lm} \end{pmatrix} : (-1)^{l+1} \quad \begin{array}{c} \mathsf{BE}-\mathsf{F}: \\ & \neg \mathcal{K}_{lm} / \mathsf{S}_{lm} - \mathsf{S}_{lm} \end{pmatrix} : (-1)^{l+1} \quad \begin{array}{c} \mathsf{BE}-\mathsf{F}: \\ & \neg \mathcal{K}_{lm} / \mathsf{S}_{lm} - \mathsf{S}_{lm} \end{pmatrix} \\ f_{lm} \propto \begin{pmatrix} 0 & 0 & 0 \\ 0 & W_{lm} & X_{lm} \\ 0 & X_{lm} - \sin^{2} \theta W_{lm} \end{pmatrix} : (-1)^{l} \quad \begin{array}{c} \mathsf{EE}-\mathsf{F}: \\ & \mathsf{G}_{lm} \mathcal{K}_{lm} - \mathsf{S}_{lm} \end{array}$$

偏光のスピン2モード

偏光状態を特徴付けるJones MatrixとStokes Parameters

$$J = \begin{pmatrix} 0 & 0 & 0 \\ 0 & E_{1}E_{1}^{*} & E_{1}E_{2}^{*} \\ 0 & E_{1}^{*}E_{2} & E_{2}E_{2}^{*} \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & I + Q & U + iV \\ 0 & U - iV & I - Q \end{pmatrix}$$
$$= \begin{pmatrix} 0 & 0 & 0 \\ 0 & I & iV \\ 0 & -iV & I \end{pmatrix} \mathcal{A} \mathcal{L} \mathcal{V} + \begin{pmatrix} 0 & 0 & 0 \\ 0 & Q & U \\ 0 & U - Q \end{pmatrix} \mathcal{A} \mathcal{L} \mathcal{V}$$

パリティー変換に対してフリップする偏光パターン(Bモード)の 検出が直接テンソルモードの検出に繋がる。

テンソルモード起源の温度揺らぎ、偏光

$$h'' + \left[k^2 - \frac{a''}{a}\right]h = 0$$

Massless scalar field と同じ振る舞い。

$$n_{tensor} \Rightarrow \mathcal{E}_H$$

野辺山22GHz(45m): 銀河団SZマッピング

RJ**側で輝度減少** Wien**側で輝度上昇** 境目217GHz

Pointecoutaue, Hattori, etal. 2002

2.CMB**観測** プロジェクト

Planck

MAP

0.1Kボロメータ

Frequency	uency Optical load Required NE		Goal time constant	Required Time cst.		
	\mathbf{pW}	$1.10^{11} \mathrm{WHz}^{12}$	IIIS	ms		
100	1.0	1.2	3.9	7.8		
143	1.1	1.5	2.9	5.7		
217	1.1	1.8	2.2	4.4		
353	1.0	2.2	2.2	4.4		
545	5.0	6.0	2.2	4.4		
857	16.0	13.5	2.2	4.4		
143P	0.57	1.1	3.0	5.7		
217P	0.54	1.3	2.2	4.4		
545P	2.50	4.3	2.2	4.4		

Table 4. Requirements on the bolometer performances. Suffix P indicates a Polarization sensitive Bolometer

500 200 1000 5000 500 200 1000 5000

NEP:検出器の感度を表す量。 0.5秒の観測でNEPワットのソースをSN=1で検出できる。

Table 6. Expected Average Noise (EAN) at mission level (see text for detailed definitions)

Central Frequency (v)	Ghz.	100	143	217	353	545	857
Spectral resolution	V/AV	3	3	3	3	3	3
Beam Full Width Half Maximum.	aremin.	9.2	7.1	5.0	5.0	5.0	5.0
ΔT/T _{CMB} Sensitivity (Intensity) (EAN)	μК/К	2.0	2.2	4.8	15	147	6700
ΔT/T _{CMB} polarisation (U and Q) (EAN)	μК/К		4.2	9.8	30	_	
Total Flux Sensitivity per pixel.	mJy.	9.8	-10.2	14.3	27	43	49
ySZ per FOV (x10°) .		1.3	2.1	615	6.5	26	605

Foregroundの差し引き

CMB偏光とダスト、シンクロトロンによる偏光

3. 東北大学3Kプロジェクト

サイト:チリ ALMAサイト5,000m以上の高原

■観測周波数域(検出器はボロメータ)

■150 **±** 15GHz

■200-300GHz(これほど帯域を広く取れるのは我々の装置だけである。)

a
観測する
の範囲(200
l<4000)

■特徴

■分光と撮像が同時に行える広帯域ミリ波サブミリ波干渉計

 SZ効果のincrement 側とdecrement 側を連続的に観測で きるので、SZによるsecondary anisotropies を取り去ること ができ、I~3000前後のprimary anisotropies を引き出すこ とができる。

<<1 の時

$$I = I_s e^{-\tau} + I_{atm} (1 - e^{-\tau}) \approx I_s + I_{atm} \tau$$

大気による吸収 大気からの熱雑音

大気からの熱雑音

 $@150 \pm 15$ GHz:NEP = 10¹⁷W/Hz^{0.5} (= 0.01)

 $@200 \sim 300$ GHz : NEP = 10¹⁶ W/Hz^{0.5} (= 0.05)

大気の揺らぎ:大気の時間的、空間的ムラ

干渉計は大気の揺らぎに強い。 下渉成分にのみ感度があるためだ。 CMB温度揺らぎのみ観る。

$$I_{v}(u,v) = \int |\hat{E}_{v}(\phi_{x},\phi_{y})|^{2} e^{-2\pi i (u \phi_{x}+v\phi_{y})} d\phi_{x} d\phi_{y}$$

 $u = \frac{v}{c} b_x, v = \frac{v}{c} b_y$ $k = \frac{v}{c} b_y$ $u, v \in \frac{v}{c}$ $u, v \in \frac{v}{c}$ $k = \frac{v}{c}$

蛙は何グラム? = (M+m)−M

検出器の選択 150GHz以上のCMB観測には ボロメータが圧倒的に有利。

通常の干渉計:Coherent 検出器

 ソースシグナルI_sに近い周波数 v の強い基準信号I_{LO}を混ぜて うなりシグナルを作る。 周波数を落とす。 増幅。 (アウトプット)² (I_s/hv)(I_{LO}/hv)
 (量子限界ノイズ)² (I_{LO}/hv)
 (アウトプット)² /(量子限界ノイズ)² = 1より NEP² > h :Coherent 検出器の量子限界 帯域 も広げられない(高々1GHz程度) アレー化(多素子化)実質不可能

ボロメータ: Incoherent検出器(位相情報取れない。時定数遅い。)

150GHz以上では、 NEP²/ (大気ノイズリミット)<NEP²/ (coherent det.) 帯域 は好きなだけ取れる。アレー化の実績あり。

干渉計 + ボロメータの 組み合わせがベスト

開口合成への応用

Jones Matrix の測定になっている

Hattori, Ohta, Matsuo, Shibata (2000)

各周波数毎の
I,Q,U,Vの
空間分布が
測定可能。

コンパクトな実用機 設計、試作。

誰でも考え付くような簡単な装置だが、これらの成果は 全て我々が世界初。

実験室実験の成果

ミリ波サブミリ波帯域での広帯域(150 1000GHz) 分光、撮像(一次元)観測に成功

I、Q、U、Vが測定可能であることを示す。

バックグランドが低い

+渉計内部で発生した/イズの殆どだ 宇宙へ逃げていく。

屋外試験観測用ヘリオスタットと0.3Kボロメータ

例:

計画:単素子ボロメータ使用の場合 @150GHzバンドで2⁴.4分解能 rms=2µK NEP=10¹⁷ボロメータで 120sec/1sky pixel 積分時間 Cosmic Variance < Tの為12,000sky pixel以上必要 総観測時間約400時間(17日) 3分、4分、6分、7分、12分、18分、24分、50分での Tを 測定:総観測時間約300時間

= > 温度揺らぎマップを作る。

200 300GHz SZ探査: NEP=10 ¹⁶ボロメータで約500時間

> 視野を徐々に広げて3 30分でCosmic Variance < T になるようにする。

ボロメータのアレイ化が出来れば、アレイの数に反比例して 掛かる時間が短縮される。

今後

- ・実用化に向けた実験室での実験の継続
- ・ 屋外天体観測の実現
- チリを目指したCMB専用装置の開発
- ・ 偏光Bモード検出を目指した検出器の開発 (ミリ波SISカメラ等)

謝辞:小松英一郎氏(プリンストン)、 諸井氏(東北大学理 素粒子)には大変お世話になりました。