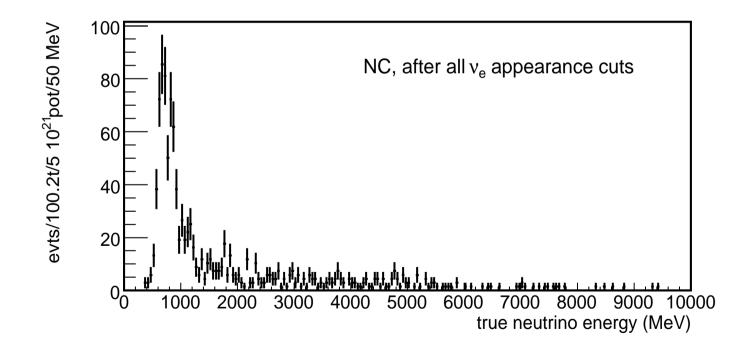
Measuremet of the left-right neutrino flux asymmetry at neutrino energies $\geq 1.6~\text{GeV}$

Anatoli Butkevich (INR, Moscow)

Talk at the T2K 2km meeting, May 18, 2006

Outline

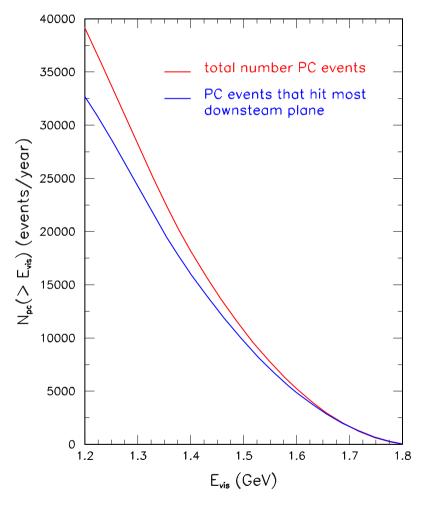

- Motivation
- Partially contained events
- Conclusions

A. Butkevich

Measurement of the

Motivation

Muon energy distribution can be measured by the monitor detector (MD) up to energy \sim 1.6 GeV. As follows from Maxim's evaluations of the electron appearance BG events due to NC ν_{μ} interactions the left-right flux asymmetry should be measured up to energy \sim 8 GeV.


- Typeset by FoilT_EX -

A. Butkevich

Measurement of the

Partially contained events

Using track lengths of PC events visible muon energy E_{vis} and integral muon energy spectrum can be reconstructed.

- Typeset by FoilT_FX -

A. Butkevich Measurement of the

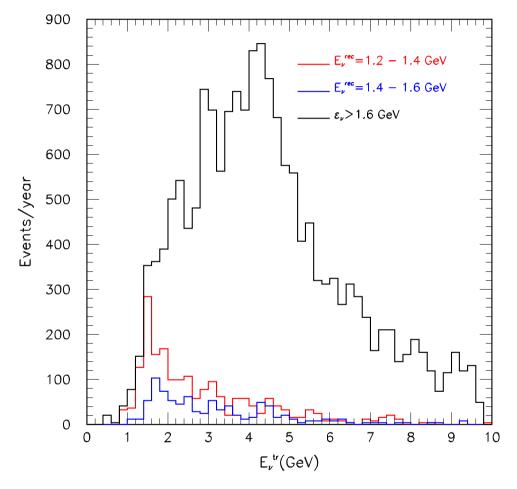
High energy muons escape from the MD mainly through the most downstream plane.

Statistic: \sim 5200 PC events/year with $E_{\mu} \geq 1.6$ GeV

Neutrino energy of PC event is larger than reconstructed visible neutrino energy

$$\varepsilon_{\nu} = \frac{(M - \epsilon_b)E_{vis} + (2M\epsilon_b - m_{\mu}^2 - \epsilon_b^2)/2}{(M - \epsilon_b) - E_{vis} + k_{vis}\cos\theta},$$

where ϵ_b is binding energy of nucleon in nucleus (35.5 MeV for Iron) and k_{vis} is visible muon momentum.


What true neutrino energies are responsible for FC + PC events with $\varepsilon_{\nu} \geq 1.6$ GeV?

A. Butkevich

Measurement of the

PC+FC events distribution as a function of true neutrino energy $E_{
u}^{tr}$ for $\varepsilon_{
u} \geq 1.6$

GeV.

FC events distributions for reconstructed neutrino energy ranges $1.2 \div 1.4$ GeV and $1.4 \div 1.6$ GeV are shown also.

– Typeset by Foil T_{EX} –

4

A. Butkevich Measurement of the

Result

• Statistic: 16620 FC+PC events/year with $\varepsilon_{\nu} \geq 1.6$ GeV.

• Neutrino energy range $2 \div 6$ GeV gives the main contribution (74%) to the FC+PC events with $\varepsilon_{\nu} \geq 1.6$ GeV.

Conclusion

We can monitor the left-right integral (1.6 $\leq E_{\nu} \leq 8$ GeV) asymmetry for the high-energy tail using FC+PC events with $\varepsilon_{\nu} \geq$ 1.6 GeV with the statistical error of about 1%.

- Typeset by FoilT_EX -