



# Update of T2K sensitivity study

4/20/2006 2km meeting Naho Tanimoto Maximilien Fechner

## Update from last meeting



- ✓ Me included 19 out of 20 systematic errors
- Systematic uncertainty of the nuclear effect doesn't work with current 2km MC sets (talk later)
- Testing critical values 90% CL=2.71, 4.61 or ... (See Maxim's talk at the last meeting) → decided to use Feldman and Cousins method
- 4. Generate Fij at every point of chi2 map of 30×30 grid
- **5**. Make pull term and  $\varepsilon/\sigma$  plots

## Systematic errors included



We included 19 out of 20 systematic errors so far.

Neutrino flux

(C) Event selection

#### T2K related errors

- a. 🗸 Fiducial volume
- b. 🗸 Energy scale
- c. 🖌 Polfit
- d. Beam related ve intrinsic BG

#### Event reconstruction

- 1-ring/multi-ring separation
- Particle ID (single-ring, multi-ring)

Neutrino interaction

M<sub>A</sub> in quasi-elastic and single-pi Quasi elastic scattering (model dependence) Quasi elastic scattering (cross section) single-pion production (cross section) multi-pion production (model dependence) multi-pion production (cross section) coherent pion production (cross section) NC/CC ratio

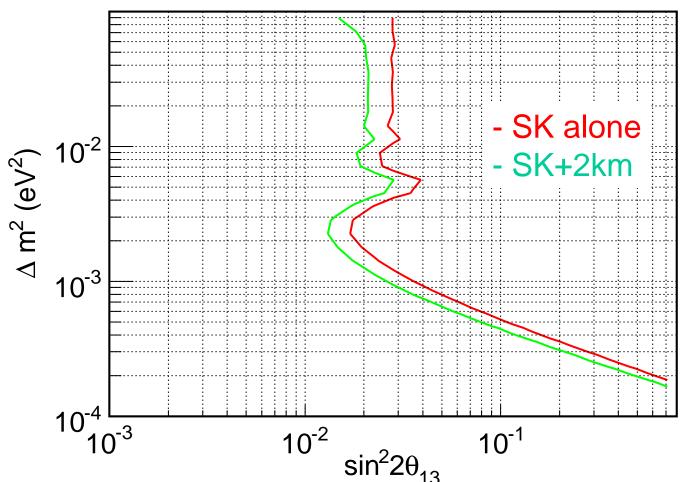
Not yet

Nuclear effect in <sup>16</sup>O

2006/4/20

Naho Tanimoto@2km meeting

Shared errors between SK&2km


SK&2km independent

## Preliminary Sensitive curve

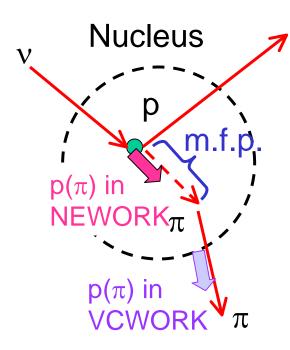


•90% CL cut at 4.61 → F & C method not yet applied
•We are still studying a proper way to include F&C with systematics

•Nsys = 18 out of 19



2006/4/20




- π's from neutrino interactions will interact inside of the <sup>16</sup>O nucleus. There are three possible types of interactions:
  - 1. Inelastic scattering
  - 2. Charge exchange
  - 3. Absorption
- Cross sections of these processes are determined by the calculated mean free path of each interaction
- These interactions are taken care by the NEUT program and saved into NEWORK bank
- NEUT output fed to the Geant4 simulation and saved into VCWORK bank

## NEWORK and VCWORK banks



O(π)=1



| lepton |                    |          |  |                    |                |  |
|--------|--------------------|----------|--|--------------------|----------------|--|
| •      | @interaction       |          |  | Leave nucleus      |                |  |
|        | NEWORK             |          |  | VCWORK             |                |  |
|        | ν                  |          |  | ν                  |                |  |
|        | target             |          |  | target             |                |  |
|        | lepton             |          |  | lepton             |                |  |
|        | target             |          |  | target             |                |  |
|        | particle ( $\pi$ ) | ρ(π)=0.8 |  | particle ( $\pi$ ) | <b>(</b> p(π): |  |
|        |                    |          |  |                    |                |  |
|        |                    |          |  |                    |                |  |

Checking  $p(\pi)$ between NEWORK and VCWORK, and determine whether there was a nuclear effect  $\rightarrow$  No simple flag!

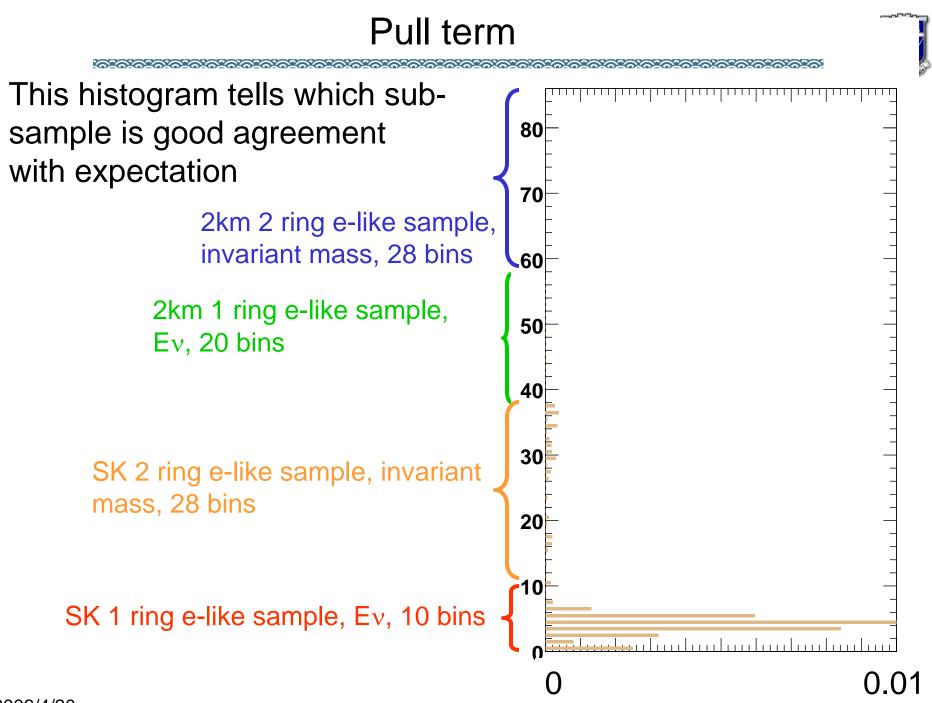
Is  $p(\pi)$  different? (Inelastic scattering) Is  $\pi$  missing? (Absorption) Is  $\pi$  charge different? (Charge exchange)

If the mode is single  $\pi$ , but PDFcode( $\pi$ )=200000, then this event is  $\pi$  less delta resonance decay

## Problem of current Nuclear effect code



- SK Atmpd nuclear effect checking code relies on the order of particle in NEWORK and VCWORK banks. SK uses Geant3 as the detector simulator
- 2km detector simulator, Geant4, screwed up the particle order in the banks, and there is nothing to indicate whether or not a nuclear effect happened
- Testing new nuclear effect flags in the ATMPD SK code
- In future, 2km MC can access to this flag

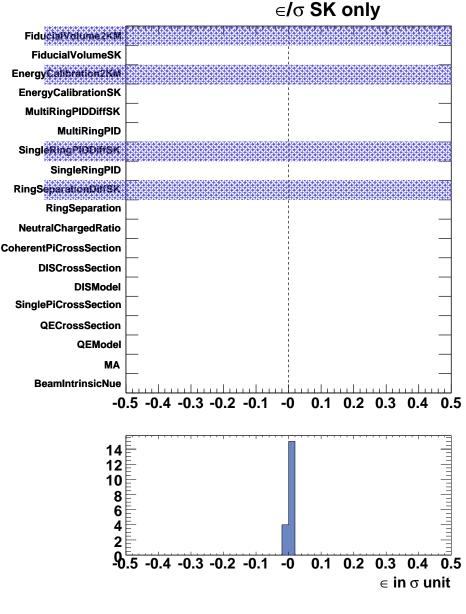

## Estimator



- Use a Poisson likelihood ratio estimator, including :
  - SK 1 ring e-like sample,  $E_{v}$ , 10 bins
  - SK 2 ring e-like sample, invariant mass, 28 bins
  - = 2km 1 ring e-like sample,  $E_{v}$ , 20 bins
  - 2km 2 ring e-like sample, invariant mass, 28 bins
  - $\rightarrow$  86 bins in total

$$\chi^{2} = \sum_{n=1}^{86} \left[ 2 \left\{ N_{exp}^{n} \left( 1 + \sum_{i=1}^{45} f_{i}^{n} \cdot \epsilon_{i} \right) - N_{obs}^{n} \right\} \quad \checkmark \quad \mathsf{Pull term} \\ + 2N_{obs}^{n} \ln \left( \frac{N_{obs}^{n}}{N_{exp}^{n} \left( 1 + \sum_{i=1}^{45} f_{i}^{n} \cdot \epsilon_{i} \right)} \right) \right] \\ + \sum_{i=1}^{43} \left( \frac{\epsilon_{i}}{\sigma_{i}} \right)^{2} \quad \neg \cdots \quad \checkmark \quad \varepsilon/\sigma \text{ term}$$

See Phys. Rev. D 66, 053010 (2002)

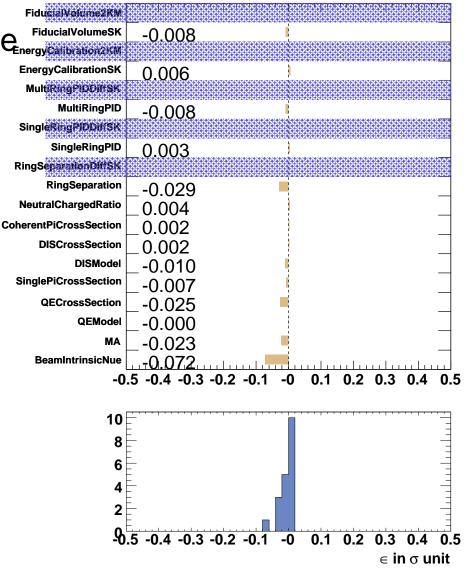



## $\epsilon/\sigma$ term (1)



If data and expected are generated at the same place, ε/σ goes to zero. Because data & expected histograms are exactly the same at the best fit point

(sin<sup>2</sup> 2θ,∆m<sup>2</sup>)=(0.017, 2.2e-3)




### $\epsilon/\sigma$ term (2)



If data generated at  $(\sin^2 2\theta, \Delta m^2) = (0, 2.5e-3), We_{\text{EnergyCalibrationSK}}^{FiducialVolumeSK}$ see which systematic uncertainty has significant offset SingleRingPID RingSeparatenDffSK





## Conclusion and plan



- We included 19 out of 20 systematic errors
- Made pull term and  $\epsilon/\sigma$  plots
- Update sensitivity curve with systematic uncertainties with Feldman & Cousins method
- Throw fake data and see  $\varepsilon/\sigma$  term and pull term
- I will implement time scaled beam profile