

Updates of sensitivity study

10/6/2005

2km meeting

- 1. Current status
- 2. Sensitive curve
- 3. Conclusions and Future Plans

Naho Tanimoto Maximilien Fechner Chris Walter

Goal : Do full v_e sensitivity analysis using both the 2km and SK MC with realistic systematic errors

- MC samples : SK [v_e , v_μ] and 2km [v_e , v_μ]
- Applied v_e appearance cuts + 0.35 < E(v) < 0.85 GeV (See next slide)
- For the sensitivity study, generated `fake data' at both of SK and 2km based on non-oscillated E(v)
 - Generate Poisson random number in each energy bin
 → Fakedata
 - Centered value of random number is based on rescaled MC with fluctuation given by proper statistics

10/6/2005

Naho Tanimoto@2km meeting

Map of χ^2

- Made map of E(v) histograms at both of SK and 2km in $sin^2 2\theta_{13}$ and Δm^2 space
- Calculate χ^2 between Fakedata and MC, $\chi^2 = \chi^2_{SK} + \chi^2_{2km}$

List of Systematic errors

SK atmospheric v group's pull fit method

SK:

Neutrino flux x absolute normalizatio flavor ratios(Ev<1.33GeV,Ev>1.33GeV) anti-neutrino/neutrino ratio(ve,vu) Up/down rat Horizontal vertical ratio(3D calc., K/π) Neutrino flight lengt Energy spectrum Sample-by-sample normalization (FC multi-GeV, PC+up stop y

Neutrino interaction

M_A in guasi-elastic and single-pi Quasi elastic scattering (model dependence) Quasi elastic scattering (cross section) single-pion production (cross section) multi-pion production (model dependence) multi-pion production (cross section) coherent pion production (cross section) NC/CC ratio Nuclear effect in ¹⁶O Charged current v_r interactioin

(C) Event selection

- FC reduction
- PC reduction
- Up-µ detection efficiency
- FC/PC relative normalization d
- Hadron simulation
- Non-v BG (e-like, µ-like) f.
- Through-going/stopping µ separation α.

(D) Event reconstruction(6)

- 1-ring/multi-ring separation a.
- Particle ID (single-ring, multi-ring) b.
- Energy calibration for FC C.
- Energy cut for upward stopping µ d.
- Up-down asymmetry of energy calibration e.

Total number of errors: 36

Treated as independent error term in χ^2 calculation

Saji's talk at Noon2004

+ T2K related : 2km detector

Conclusion

- Made ROOT based analysis framework
- Fake data generator is implemented
- Made sensitivity curve without systematic uncertainty

<u>Plan</u>

- Started to incorporate systematic uncertainties using SK Atmospheric v group's pull fit method
- Systematic uncertainties (two ways)
 - Calculate correlations between systematic errors and solve equations analytically
 - Use MINUIT to minimize χ^2 for systematic errors
- Generate a lot of fakedata histograms \rightarrow Average of χ^2
- Flat beam intensity profile in time → Use time dependent intensity

Add more histograms to constrain systematic errors (i.e. π^0 BG, intrinsic v_e BG) Naho Tanimoto@2km meeting