2KM water Cherenkov detector: reconstruction & preliminary analysis

Maximilien Fechner

- Reconstruction status
- "simple" scaling analysis à la march 05
- Combined fitter : preliminary studies

2KM MC production

Ran into several problems :

- random shooting of vertices for numu
- Polfit behaviour @ 2KM --> see next slides

The problems are now fixed, and things are running smoothly

- Nue ready (92,548 events in FV)
- Numu : ~777,000 events generated so far (282,126 in FV) [~1 year] 1 beam year = 8 CPU days (110 CPUS at Kashiwa)

You can get those ntuples from http://www.phy.duke.edu/~mfguest/ (usual username & passwd for T2K 2KM talks web page)

SK ntuples : J. Raaf finished processing them suketto : /net/sukatmd1/work21/t2k/sk/ntuples

Position & direction reconstruction

MS-fit : distance

- Determine quality of vertex & direction reconstruction for single ring events
- Define resolution as
 68% quantile of
 distributions
- Results slightly improved compared to SK because of double MS-fit iteration

MS-fit direction

similar for ve

leeting, 15/XII/05

RC & PID estimators

Polfit problems

• Presented last time during the video meeting : peak @ 60 MeV in the polfit $\gamma\gamma$ invariant mass for CCQE ve events [incorrect, destroys e/pi0 separation]

- Checked event displays : the 2nd ring was found inside the scattered light
- Tried both versions of the expected light library (expq,expq++), with wide range of scattering parameters --> no improvement
- We observe "too much" scattered light in true e- events for polfit
- -->the timing cut which is applied before polfit does not remove enough light@2KM

M. Fechner, 2KM meeting, 15/XII/05

Ritofcut

FC, FV (2m from wall), single ring, e-like events from numu & nue @ SK & 2KM Get fraction of the total charge remaining after the cut as a function of the width

Solution

- Use 10 ns for this timing cut at 2KM
- This timing cut width does not work with the vertex fits in polfit5 (large vertex biases, detroys e/piO separation) --> to be investigated later
- For the next meeting : use polfit2 with 10 ns @ 2KM

500 (Chooz limit) + beam v. 400 Using events after passing all 300 2KM SK criteria except the one under study 200 Number of Events FCFV, 1ring, e-like, no decay e-, 100 $\cos \, \theta_{\rm or}$ < 0.9 , 0.35 GeV < Ev < 0.85 GeV 200 200 ΔL ΔL 350 12 300 10 250 200 2KM SK 150 100 50

NC events have a peak @ the π^0 mass like they should and v_e events do not

0

100

200

300

inv. mass

100

200

300

inv. mass

Effect of the π^0 cuts

Using events after passing all criteria except the one under study FCFV, 1ring, e-like, no decay e-, cos $\theta_{\rm u}$ < 0.9 , 0.35 GeV < Ev < 0.85 GeV

SK & 2KM have very similar responses Confirmed with higher statistics !

M. Fechner, 2KM meeting, 15/XII/05

v_e appearance analysis

- \bullet Use the "usual" \mathbf{v}_{e} appearance cuts
- Compare selection efficiencies at SK & 2KM like in march 2005
- Numbers are quoted for 5 years (5.10²¹ pot)

2KM

Two types of analysis :

 Determine a conservative estimate of the systematics on background "prediction" from 2KM

• Use this in a combined SK+2KM fit with all reconstruction systematics (not fully operational yet).

 v_{p} appearance cuts

SK

• FV 22.5 kt (distance to wall > 200 cm)
• FC (# of OD clusters < 10)
• Evis > 100 MeV
• 1 ring, e-like
• No decay electron : use reconstructed decay e- info
• cos θ_{ve} < 0.9 (coherent pi0 suppression)
 Polfit Mγγ < 100 MeV/c² Δlog-likelihood < 80

Selection efficiencies at SK

At Super-K , 22.5 kt, 5 years, Δm^2_{23} = 2.5e-3 eV²:

	νμ CC mis-ID	NC	Beam ve	Signal (chooz)
FC,FV,Evis>100 (MeV)	2086.7	803.2	182.9	217.9
Single ring	983 (47.1%)	218 (27.1%)	89 (48.7%)	184 (84.6%)
E-like	38.8 (1.9%)	170 (21.1%)	86.7 (47.4%)	182 (83.6%)
No decay e-	11.0 (0.53%)	150 (18.7%)	71.6 (39.1%)	166 (76.2%)
0.35 <ev<0.85 (gev)<="" td=""><td>1.17 (0.06%)</td><td>50.6 (6.3%)</td><td>20.7 (11.3%)</td><td>127 (58.3%)</td></ev<0.85>	1.17 (0.06%)	50.6 (6.3%)	20.7 (11.3%)	127 (58.3%)
Cosθ _{vlepton} <0.9	0.82 (0.04%)	35.7 (4.4%)	17.5 (9.6%)	111 (51.1%)
Polfit Mγγ < 100 MeV/c²	0.32 (0.02%)	12.1 (1.5%)	13.9 (7.6%)	94 (43.2%)
Δ logLikelihood < 80	0.27 (0.013%)	10.0 (1.2%)	13.5 (7.4%)	91.8 (42.1%)

• Efficiencies very similar to the previous analysis (0.03%, 1.06%, 7%, 42% respectively)

- Differences in the event rates come from the use of a different version of the cross-section MC from the "official event rate"
- I may have to reweight them. Hayato-san will clarify this shortly.

The important point is to use the same x-section models @ SK AND @ 2KM [true at the moment as far as I can tell]

Background measurement at 2KM

	νμ CC mis-ID	NC	Beam ve
FC,FV,Evis>100 (MeV)	565857	94395.1	20104
Single ring	427593 (75.6%)	26659 (28.2%)	10459 (52%)
E-like	12326.5 (2.2%)	21537 (22.8%)	10040 (49.9%)
No decay e-	1316.5 (0.23%)	17847 (18.9%)	8038.3 (40%)
0.35 <ev<0.85 (gev)<="" td=""><td>395 (0.07%)</td><td>7175 (7.6%)</td><td>2425 (12%)</td></ev<0.85>	395 (0.07%)	7175 (7.6%)	2425 (12%)
$\cos\theta_{vlepton}$ < 0.9	316 (0.06%)	4879.7 (5.2%)	2078.5 (10.3%)
Polfit Mγγ < 100 MeV/c²	211 (0.04%)	1430.6 (1.5%)	1641.5 (8.2%)
∆logLikelihood < 80	201.9 (0.04%)	1097.1 (1.2%)	1580.2 (7.9%)
SK, ALL CUTS	0.27 (0.013%)	10.0 (1.2%)	13.5 (7.4%)

Almost identical !

Extrapolation from 2KM to SK

First : Simple scaling (same as march meeting) :

 $N_{sk} = N_{2km} (M_{sk}/M_{2km})(L_{sk}/L_{2km})^2 (\epsilon_{sk}/\epsilon_{2km})$ Assumed to be 1 here

Get estimation of BG at SK from 2KM measurement assuming identical efficiencies & spectra -> simple scaling with distances² and fiducial masses.

Systematics :

- Analysis cuts --> next slide
- Escale ~ 3 % --> shift all energy-related cuts and measure changes in the number of events

--> add in quadrature SK + 2KM

- FV ~ 4 % = (error @ SK + error @ 2KM in quadrature) -> overestimated if correlated
- <u>NEW</u> : Beam differences :

use upper bound of F/N ratio difference from 1 as conservative estimate -> 5 %

Extrapolation systematics : differences between SK & 2KM

- March 2005 analysis : use difference between SK & 2KM efficiencies at each step as an estimate of the systematic on each cut, & add in guadrature
- This measures the error on the difference between SK & 2KM
- Used to be ~ 7% for NC, 6 % for beam ve, 3 % for $\nu\mu$ CC, with greatest contribution from ring counting & PID _____

	NC	beam ve	νμ mis-ID
FV,100 <evis<1000, fc<="" td=""><td></td><td></td><td></td></evis<1000,>			
1R	-0.63%	1.25%	-1.10%
e-like	1.10%	0.61%	0.20%
no decay e-	0.15%	0.03%	-0.20%
cos θ	-0.53%	0.24%	-0.20%
Μγγ	-0.15%	0.55%	-0.10%
ΔL	-0.04%	0.34%	-0.09%
TOTAL	1.40%	1.60%	1.20%
OLD TOTAL (march 05)) ~7%	~6%	~3%

SK & 2KM performances for ve appearance are now similar to within ~ 1.5 - 2 % !

 Energy scale systematics ~ 2.5-3% for all categories of events ->dominate the analysis error

Extrapolation : results

	NC	Beam ve	νμ
SK simulation	10	13.5	0.27
Prediction from 2km (±stat±syst)	9.2±0.28±0.24	13.2±0.33±0.57	0.23±0.02±0.02

(systematics on Escale & analysis only)

Extrapolation : results

Background for v_{ρ} appearance :

Super-Kamiokande : 23.80 ± 20% (stat) scaled from 2KM : 22.61 ± 0.44 (stat) ± 1.56 (syst) = 22.6 ± 7.2 % (this analysis)

removing beam systematics (same as march) : 22.61 ± 0.44 (stat) ± 1.18 (syst) = $22.6 \pm 5.2\%$ results from the meeting in march 05 23.4 $\pm 8\%$

The systematic error is now dominated by the error on the FV (4%) & by the error caused by the energy scale (2.5%-4% depending on the channel). (+ Beam error ~ 5% : conservative)

Those results are still preliminary : I will update the numbers as MC stats increases

Combined fitter : status

• build a full chi² including pull terms for each systematic term, including all the relevant SK systematic errors including reconstruction errors

- Compare minimizer & linear matrix inversion method à la SK combined paper
- Continuing work by N. Tanimoto the code can use both methods
- Method : reweight each MC events according to oscillation probabilities ;

each systematic parameter ϵ enters as (1.0+ $\sigma\times\epsilon$) where σ is the estimated uncertainty on ϵ

- Parameters can be correlated / anti-correlated between samples :
- PID is anti-correlated between e-like & mu-like ; RC is anti-correlated between 1R & multi R etc...
- Need several samples to constrain parameters completely : if only e-like events are used, then PID term is just an overall normalization term.
- -> adding mu-like events (varying in the opposite direction) constrains it.
- At the moment 2 terms :
- NC cross-section error & ring counting
- Use 4 samples : 1 R e like @ SK & 2KM and 2 ring e-like @ SK & 2KM
- Still doing preliminary tests and checks.

Conclusion

- Problems in the $\nu\mu$ MC production are finally solved, and processes now run smoothly
- Already 1 year available, expect ~ 4-5 years by plenary T2K meeting (~ $10^6 v\mu$ in FV)
- Need to study effect of timing cut width on polfit (any version), also at SK
- With ~ 1 year available, comparison between SK & 2KM gives excellent results
- No need to remove NC elastic events @ 2KM any more : GEANT4 "binary cascade" hadronic model working fine !
- •"simple scaling" extrapolation method :
 - 2KM & SK are similar to within 2% for ve appearance
 - Very conservative estimate of systematics -> total error is 7.2 % on predicted BG falls to 5.2% when using march 05 analysis (compared to 8%)

• Combined fitter under study -> checking preliminary results , will be ready in 1 month for the meeting...

Backup slide : cross-section differences with official analysis

• "Official" event rates built with black curve

• Vectors (2KM & SK) generated with red curve

- Waiting for explanation of differences
- I can reweight the events if necessary
- OF COURSE must use same weights at both positions !