2KM mass production : vector generation

Maximilien Fechner

Special thanks to Y. Hayato, C. Walter, J. Bouchez

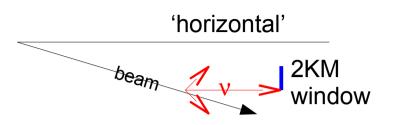
- MC mass production : requirements
- Vector generation : usual method
- Modifications

Requirements

volume	numus/T2K year	
56t 100t 56t+1m = 185t 100t+1m = 275t	~150,000 ~268,000 ~496,000 ~736,000	After all ve appearance cuts, ~ 300 vµ/yr/100t remain to study the BG

10yrs stats in 100t+1m --> 7.4 million v with R<325cm

At kashiwa (icrcals* cluster), with 100 CPUs, it takes ~12h to generate 250,000 v μ events & 48h to reconstruct them ---> ~75 DAYS!


Of course the analysis will be done in parallel

We also need 500,000 ve (longer to process because of EM showers) Max Fechner. 2KM meetina August 29th, 2005

Beam simulation code

Beam Simulator : JNUBEAM

- Produces v 4-vectors with weights
- GEANT3 simulation :

- target -> horns -> decay vol. ; simulates parent hadrons, until they decay
- At SK : point like detector. Weigt = probability to hit SK ; all v have the same direction
- At 2KM & nearer dets : hit & miss method

(if v flies through detector opening save it else try again ; stop if more than 1000 attempts) takes into account angle spread of v beam + correlations between vertex and energy

Hit & miss somewhat inefficient @ 2KM : low stats in the ntuples from the web page

August 29th, 2005

Max Fechner, 2KM meeting

Vector generator

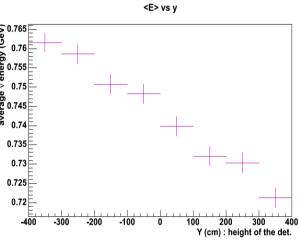
Hayato-san's code

- Different treatment for SK & 2KM to match JNUBEAM
- At SK : -make flux spectra for all v flavours

-sample ν energy from these distributions -shoot random vertex in SK, use single direction from JNUBEAM

-call NEUT to generate the \boldsymbol{v} interaction

- At 2KM : load all 2KM JNUBEAM ntuples into memory
 - loop over all events


- if (random < (weight*xsec)/(max (weight*xsec)))
keep the event</pre>

- use the vertex & direction from JNUBEAM

-call NEUT to generate the \boldsymbol{v} interaction

Vector generation (cont'd)

- SK method is faster but treats detector as a point (perfectly OK for SK)
- 2KM method :
 - preserves energy/vertex
 correlation

- slow ?

 oversamples the ntuples from JNUBEAM : need more v 4-vectors than final number of v interactions --> not possible for this MC production

-> Develop a method @ 2KM that is similar to SK & does not oversample

August 29th, 2005

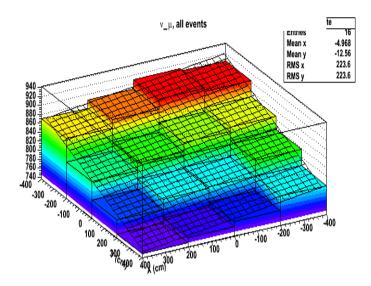
Max Fechner. 2KM meetina

Modified method at 2KM

Want to keep vertex/energy correlation (~5% effect) •--> bin the detector surface 800cmx800cm in 4x4 bins ALGORITHM :

shoot (x,y) vertex coordinate according to smoothed
 PDF(x,y)

- find the surface bin & shoot the neutrino energy according to the event rate spectrum in this bin

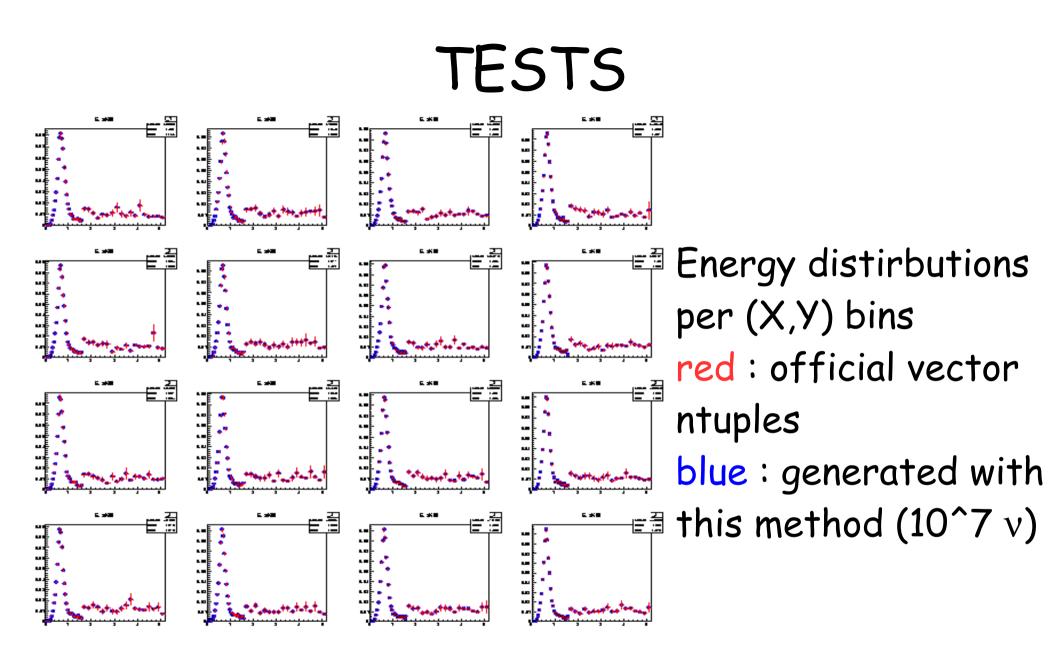

- use the average beam direction as ν direction (no angular spread, not a problem since angular spread smaller than angular resolution)

GET THE EVENT RATES :

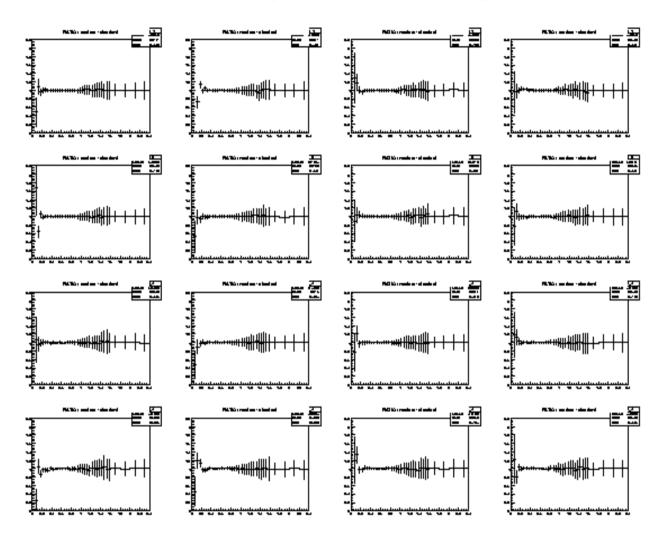
•build one event rate (= flux * total xsec) histogram in each bin using the official JNUBEAM ntuples (flux) and NEUT 4.5.1 from Hayato-san [developed a stand alone program for this]

GET THE (X,Y) PDF :

- Fill each bin with integral of previously computed event rates distributions
- Fit with a plane : A+B*X+C*Y
- Use the plane as the PDF...


Linear approximation OK at this stage :

Equation = (-0.000616301)*x*0.01+(-0.00155077)*y*0.01+(0.0624416) χ² min = 5.8 with ndof= 13


MODIFY the vector generation program to use this algorithm

REMARKS : all the event rates distributions are limited in precision by the number of events generated in JNUBEAM --> the statistical error on the output is larger than the simple 1/sqrt(N)... can't be better than the error on the input !

August 29th, 2005

Ratios of the previous histograms

Mostly flat except in first low energy bins My interpretation : these bins have very few events --> statistical fluctuations

The new program is operational !

Conclusion

- Wrote a new algorithm for vector generation suitable for near detectors
- Approximate treatment of the energy/vertex correlation
- Runs very fast ; several million events not a problem (only disk space...)
- The output needs to be processed with 'nfsi' program to correctly simulate final state interactions