Preparation for the next 2KM mass production

Maximilien Fechner

- What we need
- G4 updates

Requirements

Using the 'official' 04b vectors on the web page : events were generated in a 400cmX400cm square and we only used a 175cm-radius circle => 0.3 yrs statistics (for v_{x})

volume	numus/1year
56t	~150,000
100t	~268,000
56t + 1m = 185t	~496,000
100t + 1m = 275t	~736,000

I request 10yrs stats in 56t+1m --> 5 million v_{μ} with R<225cm

Will not be ready for the proposal but **need to start soon (within** ~ **one month)**

Requirements

Need more vectors (ie v interactions) from Hayato-san NEUT = 50k interactions/day/CPU ...

Do we need more 4-vectors from Ichikawa-san? Otherwise we apparently reuse the same n 4-vector many times. How long does that take?

Modifications to G4

Changes to G4 2KMdetsim before the next mass production :

- Variable trigger t0 (#hits(t0-200,t0)=25)->skdetsim/dshigh.F
- Add integration gates :
 nbit(i) (sum of bits / t < min(~950ns t))
- nhit(i)= {sum of hits / t_{hit} <min(~950ns, t_{hit} (0)+300ns) } -----> removes delayed Ch. Light (dcy e- for example, etc.) we used to rely on reconstruction t. cuts to do that...
- Save more secondaries 8 better
- Save more secondaries & better

+ Work on global geometry & MRD & lAr

Improve reflections/scattering

In the version of G4 used for the T2K meeting in march, reflections are the main source of indirect light -> large reflection peak which is absent from the data

-> Reduced Rayleigh scattering lenghts (by factor of 2)
-> improved the reflection model
=> better agreement with through-going muons

Caveat : may not agree with other optical data

Old (march05)

New (for the next mass production)

Does this improve PID ?

Quick check using neutrino K2K data again (old 02a not newly processed 05)

The level of agreement is about the same as in march

Charge profile investigation

Compare G4 charge profile with 'spexppe.F' (expected charge for PID) profiles.

For 500 MeV 'stable' muons (no decay e-) Using MC true vertex and direction Near the center ('centered 25t volume')

Related to PMT acceptance ?

In G4 we use perfectly hemispherical PMTs (radius=25cm)

The 'coseffsk' routine = relative effective area as a function of the light incidence angle is not correct for hemispheres ?

Could it be easily determined for hemispheres ? PID patterns not correct for G4 ?

Any suggestions from the experts ?

Conclusion

Contacted Hayato-san Need to contact Ichikawa-san for more 4-vectors ?

Modifications to G4 :

- Added integration gates
- Modified reflections and scattering leading to better agreement with cosmic ray data Does not improve μ PID though ...
- Other MRD & IAr modifs

I need to start generation in about 3 weeks or so in order to finish the study during the summer