LONG-TERM VARIATIONS OF COSMIC RAYS AND TERRESTRIAL ENVIRONMENT

rapporteur talk on SH3.4, SH3.5, SH3.6

ICRC, Tsukuba, Japan

Ilya G. Usoskin

Sodankylä Geophysical Observatory / University of Oulu, Finland

e-mail: <u>Ilya.Usoskin@oulu.fi</u> <u>http://spaceweb.oulu.fi/~usoskin/</u>

Statistics

Total number: 69 contributions (31 talks + 38 posters)

- Long-term CR modulation (13 = baker's dozen)
- Cosmogenic data (baker's dozen)
- Terrestrial effects (baker's dozen)
- CR transport in the Earth magnetosphere (baker's dozen)
- Details of CR measurements (4 contributions)
- Miscellaneous (baker's dozen):

Cosmogenic isotopes

Natural archival (indirect) data on CR measured **nowadays** (off-line measurements)

- ¹⁰Be in polar ice: (highlight talk by J. Beer) CR + N,O → ¹⁰Be (τ_{1/2} ~1.5 10⁶ y) Effective CR energy 1.3 GeV/n (local polar Alanko et al., SH3.3-4) to 2 GeV/n (global McCracken, SH3.5-2);
- **Process,** Yoshimori et al. SH3.6-12; 2P-212; Sakurai et al., SH3.6-13) **Process,** Yoshimori et al. SH3.6-12; 2P-212; Sakurai et al., SH3.6-13)
- Radiocarbon ¹⁴C : new measurements (H. Sakurai et al., SH3.5-4; Miyahara et al., SH3.5-5, 2P-222; Masuda et al., SH3.5-6) $n + N \rightarrow {}^{14}C \ (\tau_{1/2} \sim 5730 \text{ y}) \rightarrow CO_2 \rightarrow carbon \ cycle \rightarrow tree \ rings$

Effective CR energy is about 2.8 GeV/n (Alanko, Usoskin, Mursula, Kovaltsov, SH3.3-4);

mean altitude 10-15 km (Aoki et al., 2P-195);

Suess effect (fossil fuel burning) and nuclear tests make the direct calibration difficult.

Radiocarbon Δ^{14} C for the last millennium (Stuiver & Braziunas, 1993)

• 44Ti in meteorites ($\tau_{1/2} \sim 59 \text{ y}$) p + Fe,Ni \rightarrow 44Ti (Cini Castagnoli et al., SH3.4-6, 2P-195)

Effective CR energy > 70 MeV/n

• Nitrates in polar ice (ionisation by strongest SEP events > 10⁹ cm⁻² (> 30 MeV), Zeller & Parker, 1981; Gladysheva & Dreschhoff, 1997; McCracken et al., 2001) - Shea, Smart, Dreschhoff, McCracken, SH3.6-14

Cosmogenic ¹⁰Be isotope: CR modulation index

Models of ¹⁰Be production (McCracken, SH3.5-2; Beer et al., 2P-194)

The results of ¹⁰Be suggest that (McCracken et al., SH3.5-1, SH3.5-2):

»The GCR intensity (1–2 GeV/n) has varied by a factor of 2.5;

»The lowest value is since mid-20th century;

»There was significant modulation during Maunder minimum;

»The sudden decrease of ¹⁰Be level in 1700's;

»Possible 5-y variations during low solar activity

» Is ¹⁰Be related to the minimum SN?

The 11-y average ¹⁰Be data from Dye-3, Greenland (McCracken, Beer & McDonald, SH3.5-1) and 24-y averaged data from South Pole (Bard et al., 1997).

⁴⁴Ti in meteorites: a space probe

⁴⁴*Ti* ($\tau_{\frac{1}{2}}$ =59.2 year) in stony meteorites:

space probing of CR in the past

(SH3.4-6 Cini Castagnoli et al.)

Maunder minimum (1645-1700)

¹⁰Be data from Greenland (McCracken, Beer & McDonald, SH3.5-1)

The <u>dominant 22-year cyclicity</u> in <u>sunspots</u> (Usoskin, Mursula & Kovaltsov, 2000, 2001) and visual aurora occurrence</u> (Křivsky & Pejml, 1988; Schröder, 1992; Silverman 1992);
¹⁴C data (Kocharov et al., 1995; Stuiver & Braziunas, 1998; Peristyh & Damon, 1998)
NO(Y) data (Gladysheva, Kocharov, Usoskin, 2002) but

¹⁰Be data depict dominant 11-year cycle (Beer et al. 1998).

Discrepancy between earlier ¹⁴C measurements (Stuiver & Braziunas, 1993; Kocharov et al., 1995). Damon, Eastoe & Mikheeva (1999) – intercalibration of the two series. Finally, <u>new measurements</u> have come (Masuda et al., SH3.5-6) \rightarrow closer to Kocharov's series (similar variation range) but not exactly.

Regional effects?

Spörer minimum (1415-1540)

Power spectrum of ¹⁴C content and of Greenland ¹⁰Be data during SM (1410-1550)

New ¹⁴C measurements during SM (Japanese cedar tree – Miyahara et al., SH3.5-5, 2P-222):

- Reduced 11-y cycle;
- Persistent 22-y cycle with constant amplitude;

- 7-y cycle (?)

Nitrates in polar ice

8

Seasonal variations (Shea, Smart, Dreschhoff, McCracken, SH3.6-14) – What is the reason? (Climate, atmospheric processes, relative Sun/Earth configuration ?)

 Relation to geomagnetic storms / mid-latitude aurora sightings (Shea, Smart, Dreschhoff, McCracken, SH3.6-14)

Cosmogenic ⁷Be

⁷Be data provide information on the atmospheric transport (mixing between stratosphere and troposphere). Response to SEP events.

Data folded with the folding period 26 days (Sakurai et al. SH3.6-13). Note 13-day periodicity and 5-day shift.

9

Time variations of ⁷Be data (**Yoshimori et al. SH3.6-12**). Data suggest for an atmospheric mixing in Spring.

Modulation: Recent measurements

SH 3.4-2 (Shikaze et al. - BESS)

New precise balloon measurements of **p** and **He** energy spectra.

SH 3.4-1 (Clem & Evenson) – balloon measurements of **e**⁺ /**e**⁻ (AESOP) and **p**⁻ /**p** (BESS) over the polarity reversal (~1.3 GeV).

Direct evidence for the drift-effect in CR modulation

Sun's shadow

High energy CR \rightarrow shadow of the Moon (angular and energy resolution of air shower arrays) and the Sun (transport in corona, IMF) using different methods: <u>Tibet</u> (SH3.4-10, Amenomori et al.) and <u>Milagro</u> (SH3.4-11, Xu).

Yearly variations of the Sun's shadow at 10 TeV energy region observed by <u>Tibet-II</u> in 1996-2002 (SH 3.4-10):

Sun shadow is strongly affected by IMF depicting the solar cycle dependence.

A south-eastwards displacement around maximum? not confirmed by <u>Milagro</u> (SH3.4-11)

Yearly variations of the Sun's shadow at 3 TeV region observed by <u>Tibet-III</u> in 2000-2002 (SH 3.4-10) : Gnevyshev gap in 2001 ? Not observed in 10 TeV region.

Environmental monitoring

Neutron flux (most important for radiation doses) at different altitudes/locations: measurements and simulations (Zanini et al., 2P-217)

*min. solar activity, max. latitude

Ig rainouts (Cecchini et al., SH3.6-6)

Ital radiation): measurements (Cattani et al., 2P-218)

ts by SONTEL @ Gornergrat (Bütikofer et al., 2P-199)

Long-term CR

CR flux is reconstructed since 1610 using the present knowledge of modulation (Usoskin et al., SH3.4-5; Cini Castagnoli et al., SH3.4-6)

Beer et al., 2P-194 inverted the model, estimating the modulation efficiency in the past

Unusual modulation: cycle 20

Solar cycle 20 (1965-1976): unusual modulation (Webber & Lockwood, JGR, 1988; Usoskin et al., ICRC, 1997; Usoskin et al., JGR, 1998; Wibberenz et al., JGR, 2002): rigidity independent modulation and loss of the correlation to SA parameters.

CR modulation for different rigidity intervals (3–13, 3–6, and 6–13 GV) - See Storini, Massetti, Kudela, Rybak (2P-187)

67 _M

100

90

70

100

Annual data of different CR detectors (Ahluwalia, SH 3.4-4)

McCracken, Beer & McDonald (SH3.4-3); McCracken & Heikkila (2P-193) suggested, using ionisation chamber (Neher data) and ¹⁰Be data, for anomalously high flux of lower (< 1 GeV) CR during the 19 cycle minimum (1954-1955). Puzzle: increased λ_1 ; anomalous heliospheric structure with multiple HCS?

Gnevyshev gap in CR

Gnevyshev gap in CR power spectrum (Storini, Laurenza, Fujii, SH3.4-7)

Median rigidity dependence of the Gnevyshev gap effect (Storini, Laurenza, Fujii, SH3.4-7)

Gnevyshev gap in the Sun's shadow (3 TeV CR) (Tibet collaboration, SH3.4-10)

22-year CR modulation

16

- Jump in e⁺/e⁻ and p⁻/p ratios around 2000 (Clem & Evenson, SH3.4-1)
- Different CR modulation during odd- and even-cycles (Ahluwalia, SH3.4-4; Storini et al., 2P-187; McCracken & Heikkila, 2P-193)
- One-stage vs. two-stages modulation (Storini et al., 2P-187)
- Shift of the diurnal anisotropy phase towards earlier hours during qA>0 cycles (Dubey, Kumar, Kathal, Richharia, 2P-186)
- Different amplitude of the 27-day variations for odd- and even-cycles (Alania et al. 2P-185)
- 1.3-y and 1.7-y periodicity in open/closed solar magnetic flux; alteration between them during odd-even cycles (Valdes-Galicia, Lara, Mendoza, SH3.4-8).

Space weather

 Space weather is related to the variable radiation/magnetic conditions in the Earth's environment.

Belov et al. (SH3.6-11) – studied the relations between malfunctions of satellites (6000 anomalies onboard 300 satellites): most important effect from CR.

Király (SH3.4-9) – solar cycle dependence of energetic

ion anisotropy. 40 40 10 30 20 20 10 10 Makhmutov et al. (2 erron, Equinoctial and Axial effects. 0 -10 -10 -20 -20 -30 Dorman (2P-211) re -30 -4C 30 20 40 -40 -30 -20 -10 10 0 20 30 40 -30 -20 -10 0 10

Geomagnetic rigidity cutoff

Changes of the geomagnetic field (orientation and strength of the virtual dipole) is important for CR on long-term scale.

Geomagnetic dipole changes during the last millennium (after Hongre et al., 1998)

Smart & Shea (SH3.6-8), Shea & Smart (SH3.6-9) and Flückiger et al. (2P-201) calculated the geomagnetic cutoff values on the long-term scale.

Changes are significant even during the last century and should be carefully taken into account.

Some detailed calculations of the geomagnetic cutoff and have been presented for ground-based locations (Storini, 2P-215) and low-orbiting satellites (Smart et al., 2P-204, Desorgher et al., 2P-214)

VERTICAL CUTOFF RIGIDITIES (GV) 1600 BGS

Secondary particles

- Interaction of CR with the matter of the Earth's atmosphere → secondary particles → magnetically trapped and can be measured at low orbits:
 - » Mikhailov et al. (2P-207) measured spectra of trapped light isotopes by NINA-2;
 - » Galper et al. (2P-208) a model to calculate light isotopes;
 - » Miyasaka et al. (2P-210) a model for antiprotons secondary production;
 - » Zuccon et al. (2P-206) MC simulation of radiation environment at low orbit satellites (below Van Allen belts).
- Interesting result (Nakagawa et al., 2P-209):

Using an X- and γ -ray instrument, they found an unusual timevariable increase of low energy electrons near SAA with a steep spectrum during/after geomagnetic storms

CR and thunderstorms

Ermakov & Stozhkov (SH3.6-1) – qualitative generic model of the CR role in thunder cloud production: CR provide the necessary ionisation + channels for the lightning discharge.

Particle acceleration by electric field: Baksan & Mt.Norikura

Khaerdinov et al. (SH3.6-3; SH3.6-4; 2-P-198) – regression analysis for soft (e) and hard (μ) components (88 events in 2000-2002).

The e bump: a signature of e acceleration (runaway electrons) at higher level (see also **Muraki et al. SH3.6-5**) around the time of lightning. Is consistent with the idea of runaway e-s driving the lightining channel.

z, km

Muraki et a

thunder cloud

20

Miscellaneous

- (Humble & Duldig, SH3.6-7) studied asymptotic directions of a NM in a dynamical model. Daily and seasonal variations were found up to 7 GV which may lead to a (partly) spurious sederial anisotropy.
- (Alania et al., 2P-185) modelled the 27-day variations of GCR and found the odd-even cycle effect.
- (Valdes-Galicia, Lara, Mendoza, SH3.4-8) 1.3-y and 1.7-y periodicity in open/closed solar ma $K_{11}=K_{0}[\cos^{2}\gamma\cos^{2}\psi + \alpha(\cos^{2}\gamma\sin^{2}\psi + \sin^{2}\gamma)]_{K_{21}} = K_{0}[\sin\gamma\cos\gamma\cos^{2}\psi(1-\alpha) + \alpha_{1}\sin\psi]$ $K_{12}=K_{0}[\sin\gamma\cos\gamma\cos^{2}\psi(1-\alpha) - \alpha_{1}\sin\psi] \quad K_{22}=K_{0}[\sin^{2}\gamma\cos^{2}\psi + \alpha(\sin^{2}\gamma\sin^{2}\psi + \cos^{2}\gamma)]$ $K_{13}=K_{0}[\sin\psi\cos\gamma\cos\psi(\alpha-1) - \alpha_{1}\sin\gamma\cos\psi] \quad K_{23}=K_{0}[\sin\gamma\sin\psi\cos\psi(\alpha-1) + \alpha_{1}\cos\gamma\cos\psi]$ $K_{31}=K_{0}[\cos\gamma\sin\psi\cos\psi(\alpha-1) + \alpha_{1}\sin\gamma\cos\psi] \quad (2)$ $K_{32}=K_{0}[\sin\gamma\sin\psi\cos\psi(\alpha-1) - \alpha_{1}\cos\gamma\cos\psi] \quad (2)$ $Ligl \quad K_{33}=K_{0}[\sin^{2}\psi + \alpha\cos^{2}\psi]$ 2-P-205) and nuclear
- Relation between solar activity and the wheat price in Medieval England: nonlinear response in the risk agriculture region (Pustilnik, Yom Din, Dorman., SH3.5-3).
- Estimates of the effective modulation region (Stozhkov et al., 2P-183; Dorman et al.).

Highlights

- New measurements of cosmogenic isotopes:
 - » ¹⁴C annual data for the Maunder and Spoerer minima;
 - » 44Ti in meteorites;
- Environmental monitoring;
- Charged particle fluxes during thunderstorms;
- Study of long-term geomagnetic cut-off rigidities;
- Measurements and models for trapped particles.