LONG-TERM VARIATIONS OF COSMIC RAYS
AND TERRESTRIAL ENVIRONMENT

rapporteur talk on SH3.4, SH3.5, SH3.6
ICRC, Tsukuba, Japan

Illya G. Usoskin
Sodankylä Geophysical Observatory / University of Oulu, Finland

e-mail: Ilya.Usoskin@oulu.fi
http://spaceweb.oulu.fi/~usoskin/
Statistics

Total number: 69 contributions (31 talks + 38 posters)

- Long-term CR modulation (13 = baker's dozen)
- Cosmogenic data (baker's dozen)
- Terrestrial effects (baker's dozen)
- CR transport in the Earth magnetosphere (baker's dozen)
- Details of CR measurements (4 contributions)
- Miscellaneous (baker's dozen):
Cosmogenic isotopes

Natural archival (indirect) data on CR measured *nowadays* (off-line measurements)

- **10Be in polar ice**: (highlight talk by J. Beer) $CR + N,O \rightarrow ^{10}$Be ($\tau_{1/2} \sim 1.5 \times 10^6$ y)

 Effective CR energy 1.3 GeV/n (local polar Alanko et al., SH3.3-4) to *2 GeV/n* (global McCracken, SH3.5-2);

- 7Be ($\tau_{1/2} = 53.3$ days) in the air (similar process, Yoshimori et al. SH3.6-12; 2P-212; Sakurai et al., SH3.6-13)

- **Radiocarbon 14C**: new measurements (H. Sakurai et al., SH3.5-4; Miyahara et al., SH3.5-5, 2P-222; Masuda et al., SH3.5-6)

 $n + N \rightarrow ^{14}$C ($\tau_{1/2} \sim 5730$ y) $\rightarrow CO_2 \rightarrow \text{carbon cycle} \rightarrow \text{tree rings}$

 Effective CR energy is about 2.8 GeV/n (Alanko, Usoskin, Mursula, Kovaltsov, SH3.3-4);

 mean altitude 10-15 km (Aoki et al., 2P-195);

 Suess effect (fossil fuel burning) and nuclear tests make the *direct calibration difficult*.

Radiocarbon Δ^{14}C for the last millennium (Stuiver & Braziunas, 1993)

- **44Ti in meteorites** ($\tau_{1/2} \sim 59$ y) $p + Fe,Ni \rightarrow ^{44}$Ti (Cini Castagnoli et al., SH3.4-6, 2P-195)

 Effective CR energy > 70 MeV/n

- **Nitrates in polar ice** (ionisation by strongest SEP events $> 10^9$ cm$^{-2}$ (> 30 MeV), Zeller & Parker, 1981; Gladysheva & Dreschhoff, 1997; McCracken et al., 2001) - Shea, Smart, Dreschhoff, McCracken, SH3.6-14
Models of \(^{10}\text{Be}\) production (McCracken, SH3.5-2; Beer et al., 2P-194)

The results of \(^{10}\text{Be}\) suggest that (McCracken et al., SH3.5-1, SH3.5-2):

» The GCR intensity (1–2 GeV/n) has varied by a factor of 2.5;
» The lowest value is since mid-20th century;
» There was significant modulation during Maunder minimum;
» The sudden decrease of \(^{10}\text{Be}\) level in 1700’s;
» Possible 5-y variations during low solar activity
» Is \(^{10}\text{Be}\) related to the minimum SN?

The 11-y average \(^{10}\text{Be}\) data from Dye-3, Greenland (McCracken, Beer & McDonald, SH3.5-1) and 24-y averaged data from South Pole (Bard et al., 1997).
^{44}Ti (τ$_{1/2}=59.2$ year) in stony meteorites:

space probing of CR in the past

(Sh3.4-6 Cini Castagnoli et al.)
Maunder minimum (1645-1700)

The dominant 22-year cyclicity in sunspots (Usoskin, Mursula & Kovaltsov, 2000, 2001) and visual aurora occurrence (Křivsky & Pejml, 1988; Schröder, 1992; Silverman 1992); 14C data (Kocharov et al., 1995; Stuiver & Braziunas, 1998; Peristyh & Damon, 1998) NO(Y) data (Gladysheva, Kocharov, Usoskin, 2002) but 10Be data depict dominant 11-year cycle (Beer et al. 1998).

10Be data from Greenland (McCracken, Beer & McDonald, SH3.5-1)

Discrepancy between earlier 14C measurements (Stuiver & Braziunas, 1993; Kocharov et al., 1995). Damon, Eastoe & Mikheeva (1999) – intercalibration of the two series. Finally, new measurements have come (Masuda et al., SH3.5-6) closer to Kocharov’s series (similar variation range) but not exactly.

Regional effects?
Spörer minimum (1415-1540)

New 14C measurements during SM (Japanese cedar tree – Miyahara et al., SH3.5-5, 2P-222):
- Reduced 11-y cycle;
- Persistent 22-y cycle with constant amplitude;
- 7-y cycle (?)

Power spectrum of 14C content and of Greenland 10Be data during SM (1410-1550)
Nitrates in polar ice

• Seasonal variations (Shea, Smart, Dreschhoff, McCracken, SH3.6-14) – what is the reason? (Climate, atmospheric processes, relative Sun/Earth configuration?)

• Relation to geomagnetic storms / mid-latitude aurora sightings (Shea, Smart, Dreschhoff, McCracken, SH3.6-14)

Fig. 2. Impulsive nitrate events (top) and mid-latitude aurorae (bottom)
Cosmogenic 7Be

7Be data provide information on the atmospheric transport (mixing between stratosphere and troposphere). Response to SEP events.

Data folded with the folding period 26 days (Sakurai et al. SH3.6-13). Note 13-day periodicity and 5-day shift.

Time variations of 7Be data (Yoshimori et al. SH3.6-12). Data suggest for an atmospheric mixing in Spring.
Modulation: Recent measurements

Recent measurements of cosmic rays include:

- Helium flux measurements (AESOP) and Positron flux (BESS) over the polarity reversal (~1.3 GeV).
- Direct evidence for the drift-effect in CR modulation.

New precise balloon measurements of p and He energy spectra.
High energy CR → shadow of the Moon (angular and energy resolution of air shower arrays) and the Sun (transport in corona, IMF) using different methods: Tibet (SH3.4-10, Amenomori et al.) and Milagro (SH3.4-11, Xu).

Yearly variations of the Sun’s shadow at 10 TeV energy region observed by Tibet-II in 1996-2002 (SH 3.4-10):
Sun shadow is strongly affected by IMF depicting the solar cycle dependence.
A south-eastwards displacement around maximum?
not confirmed by Milagro (SH3.4-11)

Yearly variations of the Sun’s shadow at 3 TeV region observed by Tibet-III in 2000-2002 (SH 3.4-10):
Gnevyshev gap in 2001?
Not observed in 10 TeV region.
Environmental monitoring

- Neutron flux (most important for radiation doses) at different altitudes/locations: measurements and simulations (Zanini et al., 2P-217)
- Measurements of the radioactivity level during rainouts (Cecchini et al., SH3.6-6)
- Gamma-rays in 3-15 MeV range (environmental radiation): measurements (Cattani et al., 2P-218)
- Environmental radioactivity measurements by SONTEL @ Gornergrat (Bütkofer et al., 2P-199)

min. solar activity, max. latitude
CR flux is reconstructed since 1610 using the present knowledge of modulation (Usoskin et al., SH3.4-5; Cini Castagnoli et al., SH3.4-6)

Beer et al., 2P-194 inverted the model, estimating the modulation efficiency in the past
Unusual modulation: cycle 20

CR modulation for different rigidity intervals (3–13, 3–6, and 6–13 GV) - see Storini, Massetti, Kudela, Rybak (2P-187)

Annual data of different CR detectors (Ahluwalia, SH 3.4-4)

McCacken, Beer & McDonald (SH3.4-3); McCracken & Heikkila (2P-193) suggested, using ionisation chamber (Neher data) and 10Be data, for anomalously high flux of lower (< 1 GeV) CR during the 19 cycle minimum (1954-1955).

Puzzle: increased λ_{\perp}; anomalous heliospheric structure with multiple HCS?
Gnevyshev gap in CR power spectrum (Storini, Laurenza, Fujii, SH3.4-7)

Median rigidity dependence of the Gnevyshev gap effect (Storini, Laurenza, Fujii, SH3.4-7)

Gnevyshev gap in the Sun’s shadow (3 TeV CR) (Tibet collaboration, SH3.4-10)
22-year CR modulation

• Jump in e^+/e^- and p^-/p ratios around 2000 (Clem & Evenson, SH3.4-1)
• Different CR modulation during odd- and even-cycles (Ahluwalia, SH3.4-4; Storini et al., 2P-187; McCracken & Heikkila, 2P-193)
• One-stage vs. two-stages modulation (Storini et al., 2P-187)
• Shift of the diurnal anisotropy phase towards earlier hours during $qA>0$ cycles (Dubey, Kumar, Kathal, Richharia, 2P-186)
• Different amplitude of the 27-day variations for odd- and even-cycles (Alania et al. 2P-185)
• 1.3-y and 1.7-y periodicity in open/closed solar magnetic flux; alteration between them during odd-even cycles (Valdes-Galicia, Lara, Mendoza, SH3.4-8).
Space weather

- Space weather is related to the variable radiation/magnetic conditions in the Earth’s environment.

Belov et al. (SH3.6-11) – studied the relations between malfunctions of satellites (6000 anomalies onboard 300 satellites): most important effect from CR.

Dorman (2P-211) reviewed principles of space weather forecasting using CR data.

Makhmutov et al. (2P-202) – semiannual variations in electron precipitation events: Russel-McPherron, Equinoctial and Axial effects.

Király (SH3.4-9) – solar cycle dependence of energetic ion anisotropy.

Dorman (2P-211) re
Changes of the geomagnetic field (orientation and strength of the virtual dipole) is important for CR on long-term scale.

Smart & Shea (SH3.6-8), Shea & Smart (SH3.6-9) and Flückiger et al. (2P-201) calculated the geomagnetic cutoff values on the long-term scale.

Changes are significant even during the last century and should be carefully taken into account.

Some detailed calculations of the geomagnetic cutoff and have been presented for ground-based locations (Storini, 2P-215) and low-orbiting satellites (Smart et al., 2P-204, Desorgher et al., 2P-214).
Secondary particles

• Interaction of CR with the matter of the Earth’s atmosphere \rightarrow secondary particles \rightarrow magnetically trapped and can be measured at low orbits:
 » Mikhailov et al. (2P-207) – measured spectra of trapped light isotopes by NINA-2;
 » Galper et al. (2P-208) – a model to calculate light isotopes;
 » Miyasaka et al. (2P-210) – a model for antiprotons secondary production;
 » Zuccon et al. (2P-206) – MC simulation of radiation environment at low orbit satellites (below Van Allen belts).

• Interesting result (Nakagawa et al., 2P-209):
 Using an X- and γ-ray instrument, they found an unusual time-variable increase of low energy electrons near SAA with a steep spectrum during/after geomagnetic storms.
Ermakov & Stozhkov (SH3.6-1) – qualitative generic model of the CR role in thunder cloud production: CR provide the necessary ionisation + channels for the lightning discharge.

Particle acceleration by electric field: Baksan & Mt.Norikura

Khaerdinov et al. (SH3.6-3; SH3.6-4; 2-P-198) – regression analysis for soft (e) and hard (μ) components (88 events in 2000-2002). The e bump: a signature of e acceleration (runaway electrons) at higher level (see also Muraki et al. SH3.6-5) around the time of lightning. Is consistent with the idea of runaway e-s driving the lightning channel.
(Humble & Duldig, SH3.6-7) studied asymptotic directions of a NM in a dynamical model. Daily and seasonal variations were found up to 7 GV which may lead to a (partly) spurious sedimental anisotropy.

(Alania et al., 2P-185) modelled the 27-day variations of GCR and found the odd-even cycle effect.

(Valdes-Galicia, Lara, Mendoza, SH3.4-8) 1.3-y and 1.7-y periodicity in open/closed solar magnetic field directions is a clear indication of solar activity cycles.

Atmospheric cascade Monte-Carlo simulations using GEANT package (Desorgher et al., 2P-213).

Light flashes observations onboard MIR and ISSI (Sileye coll., SH3.6-2; 2-P-205) and nuclear composition inside the space stations.

Relation between solar activity and the wheat price in Medieval England: nonlinear response in the risk agriculture region (Pustilnik, Yom Din, Dorman., SH3.5-3).

Estimates of the effective modulation region (Stozhkov et al., 2P-183; Dorman et al.).
THANK YOU!
Highlights

• New measurements of cosmogenic isotopes:
 » ^{14}C annual data for the Maunder and Spoerer minima;
 » ^{44}Ti in meteorites;

• Environmental monitoring;

• Charged particle fluxes during thunderstorms;

• Study of long-term geomagnetic cut-off rigidities;

• Measurements and models for trapped particles.