

HE 1.3, 1.4, 1.5 Messengers of the Extreme Universe

Angela V. Olinto University of Chicago

Ultra High Energy Cosmic Rays

~ 80 oral and 120 posters (~10 sec/paper) Attest to the vitality of the field and

the Great Opportunity for Discoveries

The Best Messengers of the Extreme Universe

EHE Cosmic Rays should point!

Magnetic Fields less effective at EHEs (~ 10²⁰ eV):

Simulations CDM LSS + MFs \Rightarrow $B_{ExtraGal} \sim 10 \ nG$ D. Grasso (ICRC03)

AGASA clusters \Rightarrow constraints B_{gal} G. Medina-Tanco (ICRC03)

AGASA Akeno Giant Air Shower Array

Presented 3 oral + 2 posters:

11 Super-GZK events

Small Scale Clustering

Constraints on Composition - protons at UHEs.

NB43NB44 TB46 **TB43** T B17 NB46 NB4 TB47 TB36 **TB16** NB42NB41 ATB35 TB41 TB15TB14 NB25 NB11 TB32B3 TB21 TB11 TB32B3 TB32 TB11 ANB37 TB26 **ANB21** TB18 ANB32 ANB12 ANB36, ANB22 NB13 TB27 TB23 SB55 ANB33ANB23 AB1 ANB34 SB54 🔜 🚵 NB1 4 **NB24** AB1 6 SB42 ANB35 NB16 NB15 AB15 AB14 🚵S B35 AB13 SPASE 👛 S B34 AB12 AB45 AB23 SBS B32 SB1 ABLAB AB34B32AB43 SB12 S 8826 AB33 AB55 SB13 SB2 SB14 AB51 AB53 AB54 SE §B22 S B1 5 AB52 SR29 SB16 AB57 **SB29**

111 scintillators + 27 muon det.

AGASA

Composition:

K. Shinozaki et al. ICRC03

Muon density $E_0 \ge 10^{19} \text{eV} \ \theta \le 36^{\circ}$

Fe frac. (@90% CL): < 35% (10¹⁹ –10^{19.5} eV), < 76% (E>10^{19.5}eV)

Akeno 1km² : Hayashida et al. '95

Haverah Park: Ave et al. '03

Volcano Ranch: Dova *et al.* ICRC03 HiRes: Archbold *et al.* ICRC03

Gamma-ray fraction upper limits (@90%CL)

34% (>10¹⁹eV) (γ/p<0.45)

56% (>10^{19.5}eV) (γ/p<1.27)

AGASA

Small Scale Clustering

M. Teshima et al. ICRC03

1 triplet + 6 doublets (2 triplets + 6 doublets with looser cut) Clustering for E ~10¹⁹eV and ~5x10¹⁹eV, Ratio of Cluster/All increases with E up to $5x10^{19}eV$ Above GZK energy ($5x10^{19}eV$) statistics too small No significant time self-correlation

Angular Correlations

2D-Correlation Map in $(\Delta l_{II}, \Delta b_{II})$

Energy spectrum of Cluster events E -1.8±0.5

AGASA

M. Takeda et al. ICRC03

11 events with E > 10²⁰ eV AGASA systematic errors ~ 18%

The High Resolution Fly's Eye (HiRes)

Pioneers of Fluorescence Technique (8 oral + 4 posters)

No Super-GZK flux

No Small Scale Clustering

Composition Change

Air fluorescence detectors HiRes 1 - 21 mirrors HiRes 2 - 42 mirrors Dugway (Utah) start '97HR1 '99HR2

Composition:

J. Mathews et al. ICRC03

HiRes Stereo: unchanging, light composition above 10¹⁸ eV Stereo HiRes and HiRes Prototype-MIA consistent in overlap region

HiRes Prototype-MIA Hybrid changing composition (Heavy to Light) between 10¹⁷ and 10¹⁸ eV

No significant information near GZK region yet Come back to 29th ICRC

Small Scale Clustering - Monocular

J. Belz et al. ICRC03

No significant clustering seen yet. "Bananas are harder than circles..." Flux upper limits of on point sources with $E > 10^{18.5}$ eV Cygnus X-3 Dipole limit: Gal. Center, Centaurus A, M-87

HiRes-I Monocular Data, E > 10^{19.5} eV

Upper limit of 4 doublets (90% c.l.) in HiRes-I monocular dataset.

Small Scale Clustering - Stereo

C. Finley et al. ICRC03

No significant clustering seen yet.

Monocular SpectraD. Bergman et al. ICRC032 Events $E > 10^{20}$ eV HiRes (1 in Stereo)

Monocular Spectra

D. Bergman et al. ICRC03

Working to understand the difference in energy scales between the two sites HiRes ~ 7% lower energy than Fly's Eye - to match spectrum

Monocular Spectra

D. Bergman et al. ICRC03

The entire HiRes spectrum is not fit well by a single power law $\chi^2 = 102/42$ Systematic discrepancy with AGASA spectrum ~ 30% Energy

QuickTime[™] and a TIFF (Uncompressed) decompressor are needed to see this picture.

Stereo SpectrumR. W. Springer et al. ICRC03Change in spectral index weakly observed at an energy of $10^{18.6}$ eV76% Proton 24% Iron mixture

Still evaluating sources of systematic uncertainty Energy scale Fluorescence Yield

Atmospheric effects

Laser probe - L. Wiencke et al. ICRC03

Yet another discrepant spectrum...

Yakutsk

Red closed circles – trigger-500 data; Red closed triangles – trigger-1000 max. area; Red big circle – trigger-1000 within array area

AGASA versus HiRes

Agree on Light Composition (proton) at the Highest Energies!!! Small Scale Clustering seen in AGASA not in HiRes Systematic off-set in Spectrum Exposures & Systematic Errors

Most Recent Exposures

Thanks to HiRes and AGASA Collaborations

Thanks to D. Bergman

Clearly Need to Control Systematics

Fluorescence is a challenging technique! Atmospheric Monitoring necessary (not an average)

Full telescope calibration - from filters to DA

Fluorescence Yields need direct measurement

Composition studies are highly model dependent

Fluorescence in the Lab

Kakimoto et al. (1995): total yield between 300 and 400 nm, 337 nm, 357 nm,
391 nm lines, > 10 % errorNagano et al. (2003):N. Sakaki et al. HE1.5-7measurement of six wavelengths, systematic error of ~13.2% in overall yield
and in individual spectral lines

Fluorescence in the Lab

Kakimoto *et al.* (1995): total yield between 300 and 400 nm, 337 nm, 357 nm, 391 nm lines, > 10 % error
Nagano et al. (2003): N. Sakaki et al. HE1.5-7
measurement of six wavelengths, systematic error of ~13.2% in overall yield and in individual spectral lines

FLASH at SLAC P. Hüntemeyer et al HE1.5-8 (FLuorescence from Air in Showers) Thin target: September 2003 preliminary T-461 FLASH goal: < 10% accuracy in the total fluorescence yield and individual spectral lines

Model Uncertainties

EXPERIMENTS should use the SAME SIMULATION codes!! There are way too many moving parts... pick ONE (CORSIKA, or...) Hybrid Codes- H.J. Drescher ICRC03 *FLUKA* - R. Engels ICRC03

best description of Low Energy - important water tanks far from core

An extreme comparison in composition studies with QGSJet...

J. Knapp ICRC03

"Standard" Atmospheres can bias composition

M. Risse et al ICRC03

Too Low Statistics for clear GZK or no-GZK determination

number of events above 10²⁰eV: no GZK @ 2.5 sigma number of events above 10²⁰eV: GZK cutoff

DeMarco et al (ICRC03)

systematic errors in by hand...

•30% in order to reconcile low energy data (10^{18.5}-10^{19.5} eV)

•15% within limits allowed by both collaborations

best fit slope: 2.6

number of events above 10²⁰eV: no GZK @ 1.5 sigma number of events above 10²⁰eV: GZK cutoff

DeMarco et al (ICRC03)

GZK cut-off is model and B dependent...

E. Parizot et al. ICRC03

AGASA multiplets

simulations with point sources B=0 resol.=2.5° γ=2.6 m=0 E > 4 10¹⁹ eV - 57 events

Blasi, DDM 2003, AP in press

AUGER multiplets $E > 10^{20} eV - 70$ events in 5 yrs

EUSO multiplets $E > 10^{20} eV - 180-360$ events in 3 yrs

10⁻⁵ sources/Mpc³

from AGASA Small Scale Anisotropy w/ large uncertainties. Auger & EUSO will greatly reduce the uncertainties.

DeMarco et al (ICRC03)

Are the sources Astrophysical or New Physics?

Super Heavy Dark Matter Relics in the Dark Halo of our Galaxy

Relics from Early Universe

Cosmic Strings

Time to get the Heavy Artillery

Auger & EUSO

Pierre Auger Project

2 Giant AirShower Arrays

South – Argentina Funded North – Not Funded Yet

1600 particle detectors over 3000 km² + 4 Fluorescence Detectors

Will Measure Direction, Energy, & Composition of

~ 60 events/yr $E > 10^{20}eV$ ~ 6000 events/yr $E > 10^{19}eV$

> 250 scientists from 19 countries

J. Cronin and T. Yamamoto

The New Samurais in the Block are BLACK BELT!

Current status

140 tanks + 65 with electronics

time in 25 ns bins

X. Bertou et al ICRC2003

Inclined showers

Asymmetryof Showers
which lead to novelM. T. Dova et al ICRC03
M. Ave et al ICRC03CompositionStudiesM. Ave et al ICRC03

VEM/[FD energy (EeV)], MC expectation in green

Hybrid detector can reach 10¹⁸eV for Clustering studies

P. Ghia et al ICRC03

Fluorescence Telescopes

> a bno % and balu6) Nasa gancob 316 antaig aini pag aj balaan mutaig

Complete Calibration from Atmosphere to Telescope

LASERS LIDARS Telescope and Mirrors Calibs... M. Roberts et al ICRC03 M. Mustafa et al ICRC03

Analysis procedures with the FD

J. Bluemer et al ICRC03

this event: intial viewing angle 15°, i.e. large direct Cherenkov contribution iterative procedure, converges in <4 steps; suggested energy here 2e18 eV

J. Bluemer et al ICRC03

Extreme Universe Space Observatory for Extremely High Energy Cosmic Ray Observation

10 oral + 18 posters - becaming a reality! Phase A to Phase B

Some David's face Golias...

CHICOS SCROD ASHRA

Telescope Array toward precision low energy UHECRs

Expected Integrated Apertures

K. Arisaka (ICRC03)

Expected Exposures

STEREO Ni Fluorescence from ABOVE!

3000 events/year E > 10²⁰eV !!!

UHE Neutrinos!

Auger Project North & South & EUSO

will search the sky for the Highest Energy Accelerators ever observed since the

A steps sensitier.

Neutrinos at Auger

zenith angle $> 90^{\circ}$

 \mathcal{T}

 V_{τ} from Bertou et al '01 Billior 99

Large Extra Dimensions TeV Gravity

Ahn, Ave, Cavaglia, AO ICRC03

まりかどうこ ざいました。

また 2005年の時... よろ(くおねかい)申(い) あけ"ます。