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Modern Astronomy

Optical, radio, x- and gamma-ray telescopes have revealed a lot of new objects and phenomena

Cosmic micro-wave
background and big bang
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Quasars and Radio galaxies
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Supermassive Black holes
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X-ray binaries; gamma-ray
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Astronomy has taught us that more
than 90% of the Universe Is dark

But ...

Even this dark matter interacts
gravitationally; we should be able to
‘see’ this matter via gravitational
radiation it might emit
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Plan of the talk

o GW theory - a brief overview
o GW detector projects around the world

o Astronomical sources of gravitational waves

® neutron stars
® birth, binaries, environment, etc.

® black holes

® formation, binaries, super-massive holes and their
environs

@ stochastic background
® primordial, astronomical, white-dwarf, ...

o Gravitational wave data analysis
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Gravitational Waves
A simple overview of the theory
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Newton’s law of Gravity

0.000 o The force of gravity between

two masses /m and M separated
by a distance ris

o Newton’s law of gravity

transmits force instantaneously -
If body M changes its position it
Is felt by instantaneously by
body m

o If Newton’s gravity is right we
will be able to build a
‘gravitational telegraph’ which
can transmit signals
Instantaneously - a violation of
CARDIFFEinstein’s special relativity
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Einstein’s Gravity and Gravitational Waves As
Ripples in the Fabric of Spacetime

According to special relativity not even gravitational disturbances
should travel at speeds greater than the speed of light

According to Einstein’s general relativity gravity is not a force but a
warping of spacetime

Gravitational waves are ripples in the curvature of
spacetime that carry information about changing
gravitational fields




Interaction of Gravitational Waves

Plus polarisation CaRDIFF~ Cross polarisation
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Gravitational Wave Observables

Derived originally by Einstein and confirmed by Landau and Lifschitz

o Famous Quadrupole Formula - direct

Collision of two black holes at 300 ly C(_)nsequence Qf Ei_nstein’s equgtions -
can generate detectable amplitudes gives GW luminosity and amplitude

® Luminosity
L = (Asymmetry) MZ R< @ ©

® Amplitude
h = (Asymmetry) (M/R) (M/Tr)

® Frequency: Dynamical frequency in
the system

o Man made GW are very weak to observe
o For typical astronomical sources h~10-21
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Do Gravitational Waves Exist?

Inspiral in Hulse-Taylor binary pulsar

Double neutron stars; each of mass
1.4 M Orbital period 7.5 Hrs

Stars whirling around each other at a
thousandth the speed of light

According to Einstein’s theory the
binary should emit GW

GW carry rotational energy from the system
which causes the two stars to spiral in
towards each other and a decrease in the
period

Observed period change is about 10 micro
seconds per year

This decrease In period is exactly as
predicted by Einstein’s theory
Eventually the binary will coalesce
' emitting a burst of GW that will be
But that will take a 100 observable using instruments that are
million years CARDIFF currently being built
ICRC2003, 3 August 2003 LA LR B.Sathyaprakash@astro.cf.ac.uk  p10

=]
s
]
q
d
-
5
d
by
=
]
L=l
4
E




Gravitational Wave Detectors
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Resonant detectors

A cryogenic aluminum or niobium
bar with a transducer to
measure the oscillations
Induced by the tidal interaction
of GW and the bar

Basically narrow band detectors
with sensitivity around the
bar’s resonant frequency

Several bars are currently in
operation (3 in Europe, one in
US, one in Australia)

Sensitive to supernovae in our
Galaxy - improved versions
(spherical detectors) might
help in probing neutron stars

- Mini-Grail dsesds

'

. Auriga

/%
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International Gravitational Event
Collaboration - IGEC

AURIGA
' NAUTILUS
—
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Laser Interferometric Detectors
Basic Principle of Operation

Beam Splitter | MirrorA

Laser

: dlaser Beam

Photo Diggfe
s, (ARDIFF O
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Measuring Gravitational Waves
with Interferometers

) < )

For Typical Astronomical sources
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LISA . :

LIGO, GEO and TAMA €
taking data - 400,00 b .
VIRGO being installed p— ~= nterferometers
AIGO not fully funded yet @
LISA is a ESA-NASA project | N
Spacecraft #1

i GEO

ICRC2003, 3 August 2003



Technology used In a typical
Gravitational Wave Antenna

o All detectors use (or plan to use)
the most advanced technology

® low vacuum (10° T)
@ high power laser source; signal and
power recycling
@ highly reflective mirrors
@ vibration isolation suspension systems
|| o Sensitive to tiny strains - change in
arm lengths to one part in 1021
@ change in length ~ 4 10-1° m = 1,000
times smaller than Hydrogen nucleus
@ Equivalent to measuring the distance to

the nearest star with an accuracy of the
width of human hair
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Sensitivity of interferometers and
backgrounds limiting their sensitivity

Initial

Gravity gradient ] k Interferometers
and quantum Seismic noise

: Advanced
uncertalnty Of Interferometers ‘
MIrror pOSItIOﬂS E—
are the ultimate shot noise
limiting factors _ Thermal noise o

10 20 50 100 200 500 1000

frequency, Hz
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Strain Sensitivity for the LLO 4km Interferometer

31 January 2003 LIGO-G030014-00-E

le-16 T

le-17

Lol

le-19

h[f], 1/Sqrt[Hz]

le-21

le-22

18 May 2001

21 December 2001
13 June 2002

07 September 2002 (S1) |

06 January 2003

LIGO I SRD Goal. 4km

LIGO Scientific Collaboration N
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Laser Interferometer Space
Antenna

. - | o ESA-NASA collaboration
| - ® Intended for launch in 2011

o 3 space craft, 5 million km apart,
In heliocentric orbit

o Test masses are passive mirrors
shielded from solar radiation

o Crafts orbit out of the ecliptic
always retaining their formation
o Sensitivity limited by:
® long-term control
® GW b/g by Galactic sources
® shot noise ...

Session OG3, LCGT LISA and other talks
(CARDIFF
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Gravitational Wave Sources
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GW sources In ground-based
detectors

0.148 Supernovae and blrth of NS and BH

CbNbI

C96-22a - ST Scl OPO - Moy 30, 1996 HST - WFPC2

4, Hester and P, Scowen (AZ State Univ.) and NASA

Binaries of black holes and neutron stars

Relativistic Instabilities in young NS

v

Spinning neutron stars in X-ray binaries
CARDIFF
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GW Sources In Laser
Interferometer Space Antenna

o Merging supermassive black o Signals from gravitational
holes (SMBH) in galactic centers capture of small BHs by SMBHSs

\,
\, .
AN
,
\
\,
R

X-ray image of a merging SMBH
(CARDIFF
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Conventions on Source/Sensitivity Plots

Stochastic Waves

Assume the _beSt Signal/Threshold

search algorithm - in Af=f & 4 months
mtegratlon

now known

Set threshold so
that fal_sg a_Iarm Signal/ThresQold|  signal/Thyeshold
probabllity 1s=1% in Af = in 4 pfonths

iptegration
h,..= h(f) vf ~10 h(f)

Qo'b
62/70, »
Weg CW Wav

50 100 200 500 1000

frequency, Hz
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Overview of sources for
ground-based detectors

T S R
Neutron Star & Black
Hole Binaries
Spinning NS’s
LMXBs
known pulsars
previously unknown

NS Birth (SN, AIC)

tumbling, convection

StOChaStIC 20M,/20M,, ,
background Do
blg bang, populat|on frequency, Hz
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Overview of sources for LISA

LISA will see super-massive
black hole collisions
wherever they occur Iin the
Universe

LISA Sensitivity

Schutz

2 x 10°M, BHs at z=1
[ ]

RXJ1914.4+2456

LISA will see all the compact
white-dwarf and neutron-
star binaries in the Galaxy.

Frequency (Hz)
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Neutron Star Binary Inspiral

Event rates

Initial 1FOs
Range: 20 Mpc
1/3000 yrs to 1/3

YIS
Advanced IFOs

Range: 300Mpc

.........
--------
cccc
-

20 50 100 200 500 100G

frequency, Hz
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NS-NS Coalescence and bar mode
Instability

0.000 Kawamura, Oohara and Nakamura

dEsw/dr (Ms c-fsec)
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Neutron Star-Black Hole
Inspiral and NS Tidal Disruption

1.4Msun\/ 10 Msun NS/BH Binaries

Event rates
Population Synthesis

Initial 1FOs
Range: 43 Mpc
1/2500 yrs to

NS Radius to 15%
Advanced IFOs -Nuclear Physics-

Range: 650 Mpc

10 20 50 100 200 500 1000

frequency, Hz



Black Hole-Black Hole

Inspiral and Merger

Event rates are 10 Msum-10 Msun BH/BH Binaries

based on population
synthesis models
normalized to NS-NS
rate
Initial 1FO
Range: 100 Mpc
1/300yrs to
Advanced IFO
Range: z=0.4

Note BH-BH rate is
larger than NS-NS

10 20 50 100 200 500 1000
ICRC2003, 3 August 2003 frequency, Hz



BH-BH Mergers: Exploring the
Dynamics of Spacetime Warpage

| LDk

known——s| supercomputer known : e 2

~1000 cycles | simui?tions |
~1 min !

CARDIFF
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Gravitational capture and testing
uniqueness of black hole spacetimes

Modelling gravitational
waves emitted when a
super-massive BH
captures a stellar mass
BH
large parameter space
complicated dynamics
spin-orbit and spin-spin
couplings
eccentric orbit
random orientation
unknown direction
arbitrary initial phase

10'M>M>10* M,

10 M. <M.<100 M.,

CARDIFF
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Neutron Stars Sources

o Continuous-wave (CW) radiation; expect
low amplitudes, require long integration
times

o Many objects with known frequency and
position (pulsars), some more with
known positions (X-ray sources)

o Great interest in detecting radiation:
physics of such stars is poorly
understood.

® After 35 years we still don’t know
what makes pulsars pulse.

@ Interior properties not understood:
equation of state, superfluidity,
superconductivity, solid core, source
of magnetic field.

® May not even be neutron stars:
could be made of strange matter!

CARDIFF

ICRC2003, 3 August 2003 UNIVERSITY

A NEUTRON STAR: SURFACE and INTERIOR

“Swiss “Spaghetti®

| CRUST:

CRUST

b~ Polar cap

Neutron Superfluid .

Neutron Superfluid +

Neutron Vortex  Proton Superconductor
Meutron Vortex
Magnetic Flux Tube

B.Sathyaprakash@astro.cf.ac.uk

»——— ATMOSPHERE
ENVELOPE

OUTER CORE
— INNER CORE

Neutron
Superfluid

Cone of open
magnetic

lines
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Spinning Neutron Stars: Pulsars

Crustal asymmetries. Acrab
NS Ellipticity based on J1540-6914
current understanding of | J1952+3252
crustal strength and EOS: )
£<10°-10°

Can explore ellipticities of
known pulsars:

First IFOs
£>3.10° (f )2 I10kpc
Adv. Narrowband

£>2.108 (f,)? I10kpc

These are phenomenally 50 100 200 500
small ellipticities ‘ frequency, Hz
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Spinning Neutron Stars In
Low-mass X-ray Binaries

Rotation rates
~250 to 700 rev/sec

Why not faster?

Spin-up torque
balanced by GW
emission torque
(Bildsten)

If so and in steady state:
X-ray=GW strength

Combined GW & EM
obs’s carry information
about crust strength

and structure, Signal strengths for
temperature 20 days of integration g
dependence of 10 20 50 100 200 500 100C
viscosity, ... frequency, Hz
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How else do neutron stars radiate?

o Neutron Star Birth
@ Centrifugal hangup, Tumbling bar (for a few sec or min)
® With good modeling detectable to:
® Initial IFOs: ~5 Mpc (M81 group, ~1 supernova/3yr)
® Advanced IFOs: ~100 Mpc (—~500 supernovae/yr)

o Non-standard stars

@ If stars have solid cores and/or strange-star equations of state,
ellipticities can be larger by factors of perhaps 100.

o New Mechanism: toroidal B-field flip.

@ Pulsar B-fields not understood, but dynamos require toroidal fields 5.
When pulsar is formed, strong differential rotation could wind up poloidal
field, creating much stronger toroidal component. This can lead to the

star flipping over.

CARDIFF
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Neutron-Star Births:R-Mode

Sloshing In First ~1yr of Life

NS formed in SN or AIC
of a white dwarf.
/T NS born with

I:)spin

then an instabllity sets In:

R-Mode instability

Gravitational radiation
reaction drives sloshing

< 10 msec

CARDIFF
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Stochastic Background
from Very Early Universe

Detect by

cross correlating
output of Hanford &
Livingston 4km IFOs

Good sensitivity
requires

(GW wavelength) —
2Xx(det. separation)

f ~ 40 Hz
Initial 1FOs

detect If Q — 105

Advanced IFOs:

detect If @ ~5x10-°

500 1000
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GW from Very Early Universe

o Waves from standard inflation: Q—10-1°: too weak

® BUT: Crude superstring models of big bang suggest waves might be strong
enough for detection by Advanced LIGO

® GW bursts from cosmic strings: possibly detectable by Initial IFOs

® Energetic processes at (universe age) ~ 102> sec and (universe temperature)
~ 10°% Gev = GWs in LIGO band

® Phase transition at 10° Gev

® Excitations of our universe as a 3-dimensional “brane” In

higher dimensions:

© Brane forms wrinkled; when wrinkles “come inside the cosmological
horizon”, they start to oscillate; oscillation energy goes into GW

® LIGO probes waves from wrinkles of length ~ 10719 t0 10713 mm
© If wave energy equilibrates: possibly detectable by initial interferometers

CARDIFF
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Stochastic Sources In Laser
Interferometer Space Antenna

o Survey of all galactic binaries with sufficiently short periods

® Population statistics, confusion by large population at lower frequencies, confusion

limit on signal extraction, information extraction from observations
o Backgrounds, astrophysically generated and from the Big Bang

® Strength and spectrum of astrophysical backgrounds, production of early-universe

radjation, relation to fundamental physics (string theory, branes, ...)
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Supernovae and other transients

o Advanced interferometers will have the abllity to
detect strong transients events without knowing
about them ahead of time (GW Astronomy!)

o Cusps of cosmic strings might dissipate energy In
the cusp In the form of gravitational waves

y

... and other unexpected sources
CARDIFF
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The challenge:
Gravitational Wave Data Analysis

CARDIFF
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What are we up against?

Measuring strains that arise from sub-nuclear length changes;
almost anything can cause a disturbance

o unknown environmental o non-Gaussian and non-
background stationary backgrounds
@ seismic disturbances @ continually changing detector
® solar flares and magnetic configuration
storms, cosmic rays, ... @ stochastic release of strain
o unknown instrumental cnhergy I suspension

. systems, electronic feedback,
noise

® electronic noise in feedback

systems, laser frequency and Important to understand

intensity noise, thermal dEteCtQFS be_fore any
fluctuations in mirror analysis begins - Detector
substrates, thermal vibration Characterization - a huge
of suspension systems, ... effort but we shall not talk

CARDIFFabout that here
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Types of gravitational wave signals

o Transients - last for a short o Continuous waves - last for

duration so that detector a duration /ong enough so
motion can be neglected that detector motion
® Transients with known cannot be neglected
shape, e.g. black hole ® Typically very weak
binaries amplitude, signal power a
@ Transients with unknown billion times smaller than
shape, e.g. supernovae noise power
o Stochastic backgrounds ® long integration times
@ population of astronomical needed _
sources @ slowly changing frequency
@ primordial stochastic eiefpEmeling o SeuelE!
parameters

gravitational wave signals
(CARDIFF
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Why GW data analysis challenging?

All sky sensitivity
Quadrupolar antenna pattern

multiple detectors to
determine direction to source

Wide band sensitivity
1 kHz BW around 100 Hz

Low event rates
Few per year — few per day

Large data rates

Hundreds of instrumental and
environmental channels

up to 10 MB per second from
each detector x 4 detectors CARDIFF
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Gravitational Pk & Astronomy

/
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