Latest Results from BESS and Related Topics

for the BISS Collaboration

(KEK / NASA-GSFC / Tokyo / Kobe / Maryland / ISAS) Presented at ICRC-03, Aug. 1, 2003

BESS Collaboration

(as of July 2003)

•KEK

T.Kumazawa, Y.Makida, K.Matsumoto, J.Suzuki, K.Tanaka, A.Yamamoto, T.Yoshida, K.Yoshimura

•NASA/Goddard Space Flight Center

T.Hams, J.W.Mitchell, A.A.Moiseev, J.F.Ormes, M.Sasaki, R.E.Streitmatter

•The Univ. of Tokyo

H.Fuke, S.Haino, K.Izumi, S.Matsuda, N.Matsui, H.Matsumoto, J.Nishimura, T.Sanuki, Y.Yamamoto

•Kobe Univ.

K.Abe, A.Itasaki, M.Nozaki, Y.Shikaze, Y.Takasugi, K.Takeuchi, K.Tanizaki, K.Yamato

•Univ. of Maryland

M.H.Lee, Z.D.Myers, E.S.Seo

•ISAS

T.Yamagami

Balloon-borne Experiment with a Superconducting Spectrometer

• Antiparticle/Antimatter

- p, D Novel cosmic origins
 - Evaporation of Primordial Black Holes
 - Annihilation of super-symmetric particles
- **He** Baryon Asymmetry in Universe
- Fundamental Cosmic-ray Data
 - Precise spectra,
 - Propagation, solar modulation, charge-sign dependence, atmospheric secondaries

$$+ A \rightarrow \pi + \pi + \cdots$$
$$\pi \rightarrow \mu + \nu_{\mu}$$
$$\mu \rightarrow e + \nu_{e} + \nu_{\mu}$$

Reports submitted to ICRC-03

Search for cosmic-ray D-bar with the BESS,

(OG1.1; H. Fuke),

p and He spectra meas. with BESS-TeV,	(OG1.1.14, S. Haino)
Solar modulation effect on p spectra meas. by BESS	(SH3.4.2; Y. Shikaze)
3He and 4He spectra from BESS 9 8 ,	(OG1.1.10, Z. Myers)
Detecting 3H with the BESS Spectrometer,	(OG1.1; Z. Myers)
e spectrum to high energies with the BESS-1999,	(OG1.1.12, T. Hams)
Observation of atmospheric "p-bar" with BESS,	(OG1.1; K. Yamato)
p, p-bar and μ spectra at mountain altitude"	(HE 2.1; T. Sanuki)
Absolute flux of atmospheric μ with BESS",	(HE2.1.8; Y. Yamamoto)

Calculation of µ fluxes at the small atmos. Depths (HE2.4.6; K. Abe)

Geomagnetic cutoff effect on μ spectra at ground

(OG1.5.3, T. Yoshida)

(HE2.1.7; (K. Tanizaki)

BESS Highlight

- •**BESS Progress**
- Latest Results from BESS
 - Antiparticle search
 - •High E. Protons at > 100 GeV
 - •Atmospheric muons and antiprotons
 - •Low E. particles and solar modulation
- •BESS-Polar Plan

Search for Cosmic-ray Antiparticles

Search for Cosmic-ray

Antiparticles

	World-wide		BESS
1979: 1981:	First observation (Golden et al) Anomalous excess (Buffinton et al)		
1985:	ASTROMAG proposed — —	1985	Thin Solenoid conf. proposed
1987:	LEAP	1987:	Collaboration formed
1988:	Astromag frozen		
1992:	MASS	1002/4.	First Mass identified Detect
1993:	BESS First Flight	1995~7.	Distinctive neak at 2 GeV
1994:	CAPRICE, HEAT	1998:	Spectrum at < 4.2 GeV
1996:	Solar minimum		Proton spectrum up to 120 GeV
1997:	ISOMAX	2000:	Charge dependence, p-bar/p
1998:	CARPRICE, AMS-I	2001:	Atmospheric p and p-bar, mu
2000/2	Heat-pbar	2002:	BESS-TeV
	PAMELA (Polar-orbit)	0004	
	AMS (Space Station)	2004:	BESS-Polar (Plan)
2007:	Solar minimum	2006/7	BESS-Polar (Plan)

BESS Thin Solenoid Spectrometer with Large Acceptance

Thin Solenoid Spectrometer

- Large Acceptance
 - High Statistics
- Uniform magnetic field
 - High, uniform resolution
 - MDR=200 GV
- Definitive mass ID

BESS Spectrometer Progress

- BESS improved in every 9 flights successful, with
- Maximizing advantages in **Balloon** Experiments, and

BESS Highlight

BESS Progress
Latest Results from BESS
Antiparticle search
High E. Protons at > 100 GeV
Atmospheric muons and antiprotons
Low E. particles and solar modulation
BESS-Polar Plan

Search for Antiprotons of Novel Primary Origins

- Primary origins relatively enhanced at < 1 GeV,
- Low energy antiprotons are ideal probe.

Progress of Spectrometer and p measurement

Low Energy Antiproton Spectrum

Search for Anti-deuteron

- In contrast to p,
- Secondary D should be negligible in L.E. region
- If **D** observed:
 - Primary Origin !!

Antideuteron Upper Limit

Orito et al.

Secondary p

PBH p

10

Kinetic Energy (GeV/n)

(Fuke et al., OG1,1,-P)

Flux (m²s sr GeV/n)⁻¹ BESS95+97 p ti⊈i⊈i⊈iπ Mitsui et al. -2 D searched in BESS-97, 98, 99, 00 SUSY p Bergstrom et al. -3 97 98 (Mx~208GeV,Ωh²~0.05) θ/**1**/β 99 00 BESS98 Maki et al. (R~2.2x10⁻³/pq³/yr) 3 This work 2.5 No D D upper limit (97 - 00) -5 10 1.92 x 10⁻⁴ (95%C.L.) 2 PBH D Fuke et al. (R~2.2x10⁻³/pc³/yr) p 1.5 10 SUSY D Donato et al. (Mx~61GeV,Ωh²~0.13) 1 -7 8 10 0 2 4 -2 **Rigidity (GV)** PBH D Chardonnet et al. Barrau et al. $(\rho \sim 2.5 \times 10^{-34} \text{ g/cc})$ **D** upper limit, for the first time, Secondary D -8 10 10⁻¹ 1.92 x 10⁻⁴ (m²s.sr.GeV/n)⁻¹

BESS Highlight

BESS Progress
Latest Results from BESS

Antiparticle search
High E. Protons at > 100 GeV
Atmospheric muons and antiprotons
Low E. particles and solar modulation

BESS-Polar Plan

Improvement in BESS-TeV

Tracking upgraded: JET/IDC Outer Drift Chambers Istalled to improve Momentum resolution

•Sampling: ~ x 2 •Track-length: ~ x 2

	BESS-98	BESS-TeV
JET/IDC; N-track(δx)	24 (200 μm)	52 (150 μm)
JET/IDC/ODC; L-track	0.8 m	1.6 m
MDR	200 GV	1400 GV

JET/IDC Development for BESS-TeV (-Polar)

Scintillation-Fiber Counters for absolute calibration

Square-shaped Fibers 1 x 1 mm

BESS-TeV Assembled

History of BESS-TeV (01 and 02)

1999 Construction started

2001 Flight at Ft.Sumner New ODC installed Balloon not staying at float, Slow descending μ/p/He at small atm. depth

2002 Flight at Lynn Lake

New JET/IDC installed, Flight successful, but shorter p/He, low energy p

BESS-01 Balloon slowly descended

- Floating not enough for high energy proton/helium observation, however,
- A unique chance to observe atmospheric muons and antiproton
- (to be discussed later)

BESS-TeV (-02)

- Flight successful, but short because of earlier termination,
- Observation with a live time of 11 hrs,
- Data corresponding to ~1/4 compared with the original plan for BESS-TeV (two flight in 01 and 02),
- Analysis progressing with maximizing data reduction efficiency, and
- The preliminary result, obtained with ~70 % data, is given as follows:

MDR achieved in BESS-TeV (-02)

Particle identification

10 Upper TOF dE/dx (MIP **Charge determination** 8 dE/dx at Upper/Lower He **TOF** counters proton 10 10 Rigidity (GV) **Mass reconstruction** 1/B $m = ZeR\sqrt{1/2-1}$ 2.5 d contamination < 2%d (R > 3GV)1.5 $e^{+}/\mu^{+}/\pi^{+}$

0.5

1

Rigidity (GV)

Normalization for abs. flux

Proton Spectrum Extended to 500 GeV

(S. Haino et al.; OG1.1.14)

• **BESS-TeV** result consistent with **BESS-98**, and **AMS-I**, at ~ 100 GeV,

Lower energy fluxes may be explained with "Solar Modulation"

Further analysis in progress

•Estimation of systematic errors efficiencies/corrections Drift chamber calibration/alignment

•Improvement of statistics by now, half of the ODC drift area used for E>100GeV where the best performance achieved.

•He spectrum

BESS Highlight

BESS Progress
Latest Results from BESS

Antiparticle search
High E. Protons at > 100 GeV

Atmospheric muons and antiprotons

Low E. particles and solar modulation

BESS-Polar Plan

BESS Providing Fundamental Data at Various Atmospheric Depths

	Depth	Exposure
Float. (93~02)	5 g/cm ²	~1 d/yr
Descend. (01)	5~30	~10 hr
Mountain (99)	740	~ 3 days
Ground (95~02)	1000	~3 days
Ascend. (99~02)	5~1000	~3 hr/yr

Atmospheric Muons at 5~26 g/cm²

K. Abe et al.; HE2.4.6

Sensitive to hadronic interaction model

Reflect the first interaction of primary cosmic-rays in small atm. Depth, BESS results most favored with calculations using DPMJET-III

Antiproton Detected at 4 - 26 g/cm² (Yamato et al., OG1.1,P)

Atmospheric Antiprotons subtracted in BESS-99

Atmospheric p at Mt. Norikura, at 740 g/cm², in 1999 (Sanuki et al., HE 2.1.p)

calculation by Huang et al., at < 1 GeV.

Atmospheric Muons at Mt. Norikura, at 740 g/cm² (Sanuki et al., HE 2.1.p)

• BESS results consistent with theoretical calculations using such as the DPMJET-III hadronic interaction model.

BESS Highlight

BESS Progress
Latest Results from BESS

Antideuteron search
High E. Protons at > 100 GeV
Atmospheric muons and antiprotons
Low E. particles and solar modulation

BESS-Polar Plan

Proton and Helium Spectra for a half solar cycle from 1997 to 2000 (Shikaze et al., SH3.4.2)

p/p Ratio and Solar modulation Effect (Y. Asaoka et al., PRL 88, No. 5 (2002) 051101)

Energy Spectra P & He Isotopes

Wang, Seo, Sanuki et al., ApJ, 564, 244, 2002 Z. Myers et al., OG1.1.10, &Poster)

Kinetic Energy (GeV/n)

Kinetic Energy (GeV/n)

BESS Highlight

 BESS Progress Latest Results from BESS Antideuteron search •High E. Protons at > 100 GeV Atmospheric muons and antiprotons Low E. particles and solar modulation •**BESS-Polar Plan** •We are ready to realize Long Duration flight in Polar Region!,

BESS Polar

Long Duration Flights in Antarctica (T. Yoshida et al., O.G.1.5.3)

- Low Energy Antiprotons to be observed;
 - 10^3 at <1 GeV, 10^4 at <4 GeV
- Antidueteron Search with the Sensitivity
 - 1 x 10-5 (m².s.sr.GeV/n)⁻¹
- Antihelium Search with the Sensitivity
 - He/He ratio: 3 x 10⁻⁸

• Further Precise Cosmic-ray Observations

Precise measurements of Antiprotons with BESS-Polar

Search for Antideuteron

Kinetic Energy (GeV/n)

Search for Antihelium

New Spectrometer optimized for Measurements in Low Energy

•No Pressure Vessel

•Ultra-thin Solenoid

•Aerogel at bottom

•Middle TOF

Spectrometer to be further transparent and compact

• 18 g/cm² -->> 5 g/cm²

Superconducting Coil as a key technology

• Ultra thin solenoid becomes available : 1 g/cm² / coil-wall -->> Contribute to low energy limit down to 0.1 GeV

BESS-Polar Thin Solenoid Coil completed and tested up to 1.05 T

BESS-Polar Spectrometer

being prepared for a Technical Flight

to be carried out, Ft. Sumner, Sep. 2003

BESS-Polar Spectrometer

	Present	BESS-Polar.
Geom. Acceptance:	0.3	0.3 m ² •sr
Material for trigger:	18 g/cm²	4.5 g/cm ²
Magnetic field	10Т	0 8 T
Weight	2.2	1.4 tons
Power	Battery	Solar-panel
Comsumption	1.2 kW	600 W
Cryogen life	5.5	20 days

BESS-Polar

Summary

- First results in search for cosmic antiparticle:
 - **D** upper limit of 1.9 x 10⁻⁴ (m².s.sr.GeV/n)⁻¹, for the first time.
 - Atmospheric p flux at 5 26 g/cm², and at 740 g/cm².
- Fudamental data:
 - p spectrum extended up to 500 GeV, consistent with BESS-98, AMS-I.
- Atmospheric µ spectra
 - consistent with theoretical calculation using DPMJET-III hadronic interaction model (Honda et al.,)
- **BESS-Polar**
 - extend search for low energy p, D and He of novel cosmic origins, as well as to provide fundamental data.
 - BESS-Polar spectrometer in progress :
 - Sensitive down to 0.1 GeV,
 - The first flight planned to be realized in 2004.

Acknowledgements

We would thank:

NASA, ISAS, and KEK for their support and encouragements for BESS experiment as a US-Japan Cooperation Program carried out since 1993, funded by NASA grant for scientific balloon program (US) and MEXT grant-in-aid (Japan).

This talk given with our memory of BESS advisor/founders, the late Prof. R. Golden (NMSU), and Prof. S. Orito (Tokyo)

Response to Questions (added)

Absolute Fluxes of Atmospheric Muons Atmospheric Depth Dependence (Y. Yamamoto et al., HE2.1.8)

• Overall growth curve generally well produced by calculations

Muon Spectra and Flux Ratio

at Ground Level

(K. Tanizaki et al., HE2.1.7)

Fig. 1. (left):Result for momentum spectra of the positive and negative muons at Ft. Sumner. (right):μ⁺/μ⁻ ratios at different geomagnetic locations, BESS-1999[11]