Birth of Neutrino Astrophysics
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For more details, see my review article;
“Observational Neutrino Astrophysics™; Physics Report, 220
(1992) N0s.5&6, pp.229-482.

The content of this talk will appear shortly in Reviews of Modern
Physics.



Conception

There was a very important prenatal event.

That was the radiochemical work of R.Davis using
the reaction v,+CI37 to e+Ar3’. The conclusion
was that the solar neutrinos are only about 1/3 of
what you expect from the Standard Solar Model of
J.Bahcall.

This could be considered as the conception of the
Neutrino Astrophysics and was the impetus for us
to begin seriously working on the solar neutrinos



The experiments

1) KamiokaNDE; Imaging Water Cerenkov,
20% PMT coverage, 3,000tons,
ca.3MUSS.

Feasibility experiment.

2) Super-KamiokaNDE; the same as above,
40% PMT coverage, 50,000tons,
ca.100MUSS$.

Full scale solar neutrino observatory.

(Both 1,000m underground in Kamioka Mine)

(NDE for Nucleon Decay Experiment/

Neutrino Detection Experiment))



Fish-eye View of KamiokaNDE’s Interior
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Detector Performances

1) Through p in S-KamiokaNDE
Shots at 50 nanosecond intervals

2) Discrimination between electron and muon
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The data of
the outer
anti-
counter are
shown,
while the
Inner data
are moved

to the top
right.




The top e-event has a blurred
radial distribution of Cerenkov
photons, while the bottom p-event
has a crisp ring image. The
discrimination between e and p IS
accomplished with an error
probability of less than 1%.

The u—event has the decay
electron later.




4 Accomplishments of
KamiokaNDE

1) The astrophysical,i.e., with D, T and E,
observation of solar neutrinos by means of v,-e
scattering.

2) The observation of the neutrino burst from

Supernova 1987A by means of anti-v,on p
producing e* plus neutron.

3) The discovery at more than 4c of the anomaly In
the atmospheric v /v, ratio. Neutrino oscillation.
Non-zero masses of v’s.

4) Killed SU(5) by proton decay lifetime and
SUSYSU(5) also by non-zero masses of v’s.



Solar Neutrinos

Standard Solar Model (SSM)
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Solar Neutrino Experiments

- Homestake

- Kamiokande
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Number of events / 1036-day
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Solar neutrinos (Kamiokande-lll)
Dec. 28, 1990 — Feb. 6, 1995 (1036 days )
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Energy spectrum of solar neutrino events

Kamiokande Il and Ill (2079 days )
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The detector performance at the beginning of 1987.
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The observed signal of the supernova neutrino burst. It was
Immediately confirmed by IMB experiment in USA. The
combined results, T, of 4.5MeV and the total v energy output of
3x10%3erg gave strong support to the theoretical model.
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v,/Ve has to be 2 or larger

Atmospheric neutrinos

‘L=up to 13000 km

Vet Ve _ _ > @ low energy (E, <1 GeV)

Vet Ve

@ high energy

Error in flux~25%, double ratio~5%

Neutrino oscillations :
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Y.Fukuda et al., Phys. Lett. B 335 (1984) 237.
M.Shiozawa, for the SK collab., talk at Neutrino 2002,
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1)
2)

3)

Super-KamiokaNDE
Accomplished
Three things so far.

Established the solar neutrino observation
with much better statistics.

Firmly established, at more than 9c, the
non-zero masses of v’s and their oscillations.

Non-observation of nucleon decays Is giving
more stringent restriction on the possible type of
future grand unified theory.



Solar neutrinos (Super—Kamiokande)
May 31, 1996 — July 13, 2001 (1496 days)
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The Sun by Neutrinograph

The Sun as seen by v'S
and 1ts orbit in the
Galactic coordinate.

You have to excuse the
poor angular resolution
because the neutrino
astrophysics is still in
Its infantile stage.
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Energy spectrum of solar neutrino events
Super-Kamiokande 1496 days
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The Neutrino Oscillation

Consider 2 neutrino case for simplicity.

The weak eigenstate y , Is a superposition of

V., and y,.with a parameter 0, the angle
petween vy, and y,,; . Since E~p+(m4/p)

The two states, v, and y,,,, make beat

with the frequency proportional to Am?=m,?-m.?,
thereby changing the relative intensity.

This causes a partial transformation of vy, t0 ..




Allowed region combined with SNO data
Super-Kamiokande 1496 days
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Am? in eV?

Allowed region combined with all solar neutrino data
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LMA is the most likely solution.

S.Fukuda et al., Phys. Lett. B 539 (2002) 179
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Implications of Non-zero
Neutrino Masses

ne right handed neutrinos have to exist.
ard Theory has to be modified and

J(5)

IS discarded as possible GUT.
2) Very low energy neutrinos will make the

total

reflection at very low temperature. Very

nice for the future possibility of observing the
1.9K Cosmic Neutrino Background.



For Fun

From the Am?’s obtained, we can get a possible
mass spectra of elementary particles using the
See-Saw mechanism. And If we consider a small
electromagnetic mass shift occurred in one of the
phase changes in the very early Universe, we get
the nice regularity as seen in the last slide.

Anyone of you challenge to explain this
regularity?
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Thank you for

your patience.
M. Koshiba



