EFFECT OF EAST-WEST AND RADIAL ANISOTROPY ON HALE CYCLE IN THE HARMONICS OF DAILY VARIATION IN C R INTENSITY

Rekha Agarwal Mishra¹ and Rajesh K. Mishra²

(1) Govt. Autonomous Model Science College, Jabalpur (M.P.) India 482 001

(2) Tropical Forest Research Institute, Jabalpur (M.P.) India 482 001

Abstract

The data of the Deep River neutron monitoring station has been harmonically analysed for the period 1964–95 to obtain the diurnal and semi-diurnal components of cosmic ray intensity on geomagnetically 60 quiet days. The annual diurnal anisotropy vectors have been resolved into two components, one along the 12-Hr direction, the radial anisotropy component and the other along 18-Hr direction, east-west anisotropy component. It is observed that when the polarity of SPMF in NH is positive, the radial anisotropy component increases; whereas, east-west anisotropy component decreases. This results in shifting the diurnal anisotropy vector towards earlier hours during positive polarity epoch. During negative polarity epoch, the east-west anisotropy component attains its maximum and the radial anisotropy component attains its minimum, which results in shifting the anisotropy vector gradually towards later hours. For semi-diurnal anisotropy it is found that the magnitude of 3-Hr component is larger as compared to 6-Hr component during the positive polarity epoch, which results in shifting the anisotropy vector towards earlier hours but the same does not hold good for the negative polarity epoch i.e., the magnitude of 6-Hr component is not always found to be greater as compared to the 3-Hr component.

1. Introduction

Various CR anisotropies are found to depend on the solar magnetic field orientation, which extend in the interplanetary space, embedded within by the solar wind, in turn affecting the polarity configuration of interplanetary magnetic field (IMF). The abrupt reversal of vectors for annual and semi-annual anisotropy is associated with the reversal of polarities of solar polar magnetic fields (Antonucci et al., 1978). Studies of solar magnetic field have revealed that these fields change sign about every 11/22-year near the time of maximum solar activity (Webber and Lockwood, 1988). The nature of the long-term variation in CR intensity is likely to depend upon the polarity of the SPMF (Nagashima and Fujimoto, 1989) The phase shift in CR solar diurnal variation following the

pp. 4005–4010 ©2003 by Universal Academy Press, Inc.

4006 —

heliomagnetic polarity reversal has been pointed out by many researchers (Kumar et al., 1998, Sabbah, 1999a, b). Munakata et al. (1995) pointed out a clear dependence of the three harmonics on the magnetic polarity of the heliosphere whereas, Ahluwalia and Fikani (1996) denied the effect of polarity on semi-diurnal anisotropy parameters.

2. Experimental data and analysis

Pressure corrected data of Deep River neutron monitoring (NM) station (cutoff rigidity 1.02 GV; latitude 46.1° N; longitude 282.5° E; altitude 145 M) has been Fourier analysed after applying trend corrections to obtain the first and second harmonics at ground for the period 1964–95. According to solar geophysical data five quietest days are selected in a month; thus 60 quietest days in a year. These are called International Quiet Quiet days or QQ days. The study of diurnal and semi-diurnal variation has been performed on 60 QQ for the period 1964–95. The justification for the selection of only geomagnetic quiet days for the analysis purpose has been discussed elsewhere [20]. The days with extraordinarily large amplitude, if any, have not been taken into consideration. Also all those days are discarded having more than three continuous hourly data missing.

3. Result and Discussion

The annual diurnal anisotropy vectors, R_1 (%) obtained on 60 QD for Deep River NM have been resolved into two components as depicted in Fig 1. One along the 12-Hr direction i.e., the radial anisotropy component, R_{1R} (%) and the other is along 18-Hr direction i.e., east-west anisotropy component, $R_{1\phi}$ (%). The trend of the plots is very similar to that obtained by Sabbah (1999b) for the Deep River NM coupled with UMT located at Socorro. Prior to 1971, when the polarity of SPMF in NH is negative, the diurnal anisotropy vector, R_1 has almost constant ≈ 16 -Hr LT direction, ϕ_1 at ground. After 1971, the radial anisotropy component increases sharply; whereas, east-west anisotropy component decreases gradually and attains its minimum in 1976. This results in shifting the diurnal anisotropy vector towards earlier hours during positive polarity epoch. During negative polarity epoch, the east-west anisotropy component attains its maximum in 1985 and the radial anisotropy component is minimum in 1987 which results in shifting the anisotropy vector gradually towards later hours. The east-west component has its lowest again in 1995 around solar activity minima; whereas, radial component has its highest which is responsible for the early hour shift of diurnal anisotropy vector. For semi-diurnal anisotropy as depicted in Fig 2, it is found that the magnitude of 3-Hr component is larger as compared to 6-Hr component during the positive polarity epoch, which results in shifting the anisotropy vector towards earlier hours but the same does not hold good for the

Fig. 1. The phase ϕ_1 (Hr, LT), amplitude R_1 (%), radial component R_{1R} (%) and east-west component $R_{1\phi}$ (%) at ground of the annual diurnal anisotropy in cosmic ray intensity on 60 QD plotted alongwith SPMF polarity in NH and SH for the period 1964–95

negative polarity epoch i.e, the magitude of 6-Hr component is not always found to be greater as compared to the 3-Hr component.

It is found that there exist a clear 11/22-year variations of the solar daily variations (diurnal and semi-diurnal), the first is due to the variation of the solar activity while the second is due to the polarity of the solar magnetic cycle (El-Borie et al., 1995a, b). The recovery from CR 11-year modulation follows two distinct repetitive patterns (Ahluwalia, 1994a) when the magnetic polarity of the Sun in the NH is negative, the recovery is completed in 5 to 8 years but for the positive magnetic polarity epochs the recovery period is reduced to less than half as much (Ahluwalia, 1996). The 22-year modulation consists of two discrete states each corresponding respectively to parallel and anti-parallel states of the polar magnetic field of the Sun is nearly parallel to the galactic magnetic field, they could easily connect with each other, so that the galactic cosmic rays could intrude more easily into the heliomagnetosphere along the magnetic fields (Nagashima and Morishita, 1979).

According to the theoretical investigation by Munakata and Nagashima (1984), the polarity dependence of the phase change has been interpreted as a result of the change in CR density distribution in space caused by the difference of CR drift motion in the positive and negative polarity states (Jokipii et al., 1977). The study state drift models predicts that the phase of the diurnal anisotropy

Fig. 2. The phase ϕ_2 (Hr, LT), amplitude A₂ (%), 6 Hr component, 3 Hr component alongwith values of Ap-index on 60 QD and polarity of SPMF in NH and SH has been plotted for the period 1964–95

responds significantly to a polarity change and shifts from ~ 18 -Hr LT in space for negative polarity epoch to ~ 15 -Hr LT in space during positive polarity epoch (Van Staden and Potgieter, 1991). Sign of the transverse particle density gradient changes with a change in the solar magnetic polarity. Its annual mean value is positive for positive polarity epoch and negative for negative polarity epoch (Ahluwalia, 1994b).

The two components of the solar diurnal variation observed with two detectors characterized by linearly independent coupling functions have been used by Sabbah (1999 a, b) to estimate the free space anisotropy vector during the period 1968–95. The amplitude of the radial anisotropy shows \sim 20-year magnetic cycle with the highest values around solar activity minima for positive polarity; whereas, the east-west anisotropy is minimum. Ahluwalia (1988) resolved the annual mean diurnal anisotropy vector along the two rectangular components one is the east-west along 18-Hr direction and the other is the radial component along 12-Hr direction. The amplitude of the radial anisotropy is zero till 1970 and increases sharply after polar field reversal of 1971. This analysis has been extended to diurnal and semi-diurnal anisotropy for the period 1964–95. The semi-diurnal anisotropy has been resolved along the two perpendicular components in the 3-Hr and 6-Hr directions.

Potgieter et al. (1980) pointed out that during the periods when northern hemispheric field points towards the Sun, positively charged particles will flow from the ecliptic towards the solar poles, leading to decrease in intensities of positively charged particles observed near the Earth and hardening the primary

4008 -

spectra of particles to which neutron monitors respond. When the southern hemispheric field points towards the Sun, particles flow towards the ecliptic and near to the Earth intensities are increased and the spectra is softened. Nagashima and Fujimoto (1989) pointed out the existence of polarity dependence in the rigidity spectrum of the semi-diurnal anisotropy. The semi-diurnal anisotropy vectors suddenly change their relative configuration from the usual direction to another for the polarity reversal of polar magnetic field of Sun from positive to negative state in NH. The state is defined as "positive" when the polar magnetic field is away from the Sun in NH and towards the Sun in SH, while it is called "negative" when the polar magnetic fields are reversed. Duldig (1991), using the data from the underground Mawson telescope for the period 1973–89, observed that the solar semi-diurnal variation is remarkably constant throughout the solar polarity reversal of cycle-21. Thus, confirming that the semi-diurnal anisotropy changes only at low rigidities with the solar polarity reversal but the higher rigidity spectrum remains constant (Nagashima and Fujimoto, 1989). On the contrary Ahluwalia and Fikani (1996) denied the effect at all primary rigidities. Munakata et al. (1995) pointed out that during the 1970's and 1990's when the magnetic polarity of the heliosphere is positive in NH the phases of the first two harmonics are significantly shifted towards earlier hours than those during 1980's when the polarity of the heliosphere is negative in NH.

4. Conclusions

For the positive polarity epoch the radial anisotropy vector has higher amplitude as compared to east-west anisotropy vector which results in shifting the phase towards earlier hour for the diurnal anisotropy vector whereas the same does not hold true for the semi-diurnal anisotropy.

5. References

- 1. Antonucci E., Marocchi D., Perona G.E. 1978, Astrophys. J. 220, 915
- 2. Webber W.R., Lockwood J.A. 1988, J. Geophys. Res. 93, 8735
- 3. Nagashima K., Fujimoto K. 1989, Planet. Space Sci. 37, 1421
- Kumar S., Shrivastava S.K., Dubey S.K., Richhariya M.K., Gulati U. 1998, Ind. J. Radio and Space Phys. 27, 150
- 5. Sabbah I. 1999a, 26th Int. Cosmic Ray Conf., Utah 7, 272.
- 6. Sabbah I. 1999b, Solar Physics 188, 403.
- Munakata Y., Tatsuoka S., Yasues S., Munakata K., Mori S., Fujii Z., Sakakibara S., Ueno H., Fujimoto K. 1995, 24th Int. Cosmic Ray Conf. Rome 4, 615.
- 8. Ahluwalia H.S., Fikani M.M. 1996, J. Geophys. Res. 101, 11087
- 9. El-Borie M.A., Sabbah I., Darwish A., Bishara A. 1995a, 24th Int. Cosmic Ray

4010 —

Conf., Rome 4, 603.

- El-Borie M.A., Sabbah I., Darwish A., Bishara A., 1995b, 24th Int. Cosmic Ray Conf., Rome 4, 619.
- 11. Ahluwalia H.S. 1994a, J. Geophys. Res. 99, 11561.
- 12. Ahluwalia H.S. 1996, J. Geophys. Res. 101, 13549.
- Nagashima K., Morishita I. 1979, 16th Int. Cosmic Ray Conf., Kyoto MG 3-29, 13.
- 14. Munakata K., Nagashima K. 1984, Int. Symp. Cosmic Rays, Awate, 144.
- 15. Jokipii J.R., Levy E.H., Hubbard W.B. 1977, Astrophys. J. 213, 861.
- 16. Van Staden M.L., Potgieter M.S. 1991, Planet. Space Sci. 39, 1237.
- 17. Ahluwalia H.S, 1994b, J. Geophys. Res. 99, 23515.
- 18. Ahluwalia H.S. 1988, Geophys. Res. Lett. 15, 287.
- Potgieter M.S., Moraal H., Rasbenheimer B.C., Stoker P.H. 1980, S. Afr. J. Phys. 3, 90.
- 20. Nagashima K., Fujimoto K. 1989, Planet. Space Sci. 37, 1421.
- 21. Duldig M.L. 1991, 22nd Int. Cosmic Ray Conf., Ireland 3, 437.