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Abstract

The standard method to calculate spatial intensity gradients of energetic

particles in the heliosphere is the “non-local” gradient (NLG) method [3], which
requires observations from at least three spacecraft to simultaneously determine

radial (gr) and latitudinal (gλ) gradients. We present a novel technique to calcu-
late “quasi-local” gradients (QLG) [1] and apply the method to anomalous cosmic

ray (ACR) ions during the 1994–1999 recovery phase. Under the prevailing condi-
tions, the QLG method requires fewer than three spacecraft to determine gr and

gλ. We briefly compare some assumptions, strengths, and weaknesses of the QLG
and NLG methods. We use QLG with Voyager 1 & 2 (V1 & V2) Low Energy

Charged Particle (LECP) measurements [2] to determine ACR gradients, which
agree well with both a phenomenological ACR intensity model and a numerical,

time-dependent solution to the Fokker-Planck equation [1]. A principle result is
the unexpected determination of gλ < 0 for ACRs having rigidities less than ∼ 2

GV during the positive heliomagnetic polarity.

1. Quasi-Local Gradient Method

Under steady state conditions, the QLG method can be employed to si-

multaneously determine gr and gλ from two spacecraft. The required conditions
for relative motion between the two spacecraft are mild, e.g., both spacecraft can-

not be stationary nor following the same linear trajectory in the heliolatitude (λ)
vs. helioradius (r) plane. We start with the same differential expression for the

intensity j in terms of constant gr and gλ that many others authors have used

to determine gradients traditionally [3]: dj
j

= grdr + gλdλ. Solving for ln(j) and
dividing by ∆r we arrive at the following:

ln(j1/j2)

∆r
= gr +

∆λ

∆r
gλ, (1)

where Arabic indices identify each spacecraft and ∆r ≡ r1 − r2 and ∆λ ≡ λ1 −λ2

are defined. We define x ≡ ∆λ
∆r

and y ≡ ln(j1/j2)
∆r

for convenience, yielding y =

gr +xgλ. We have learned that Eq. 1 was independently used by Paizis et al. [4],

but their subsequent procedure is unlike the QLG method.
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Fig. 1. Schematic (a) QLG plot and (b) |λ| vs. r trajectories for V1 and V2. Five
sample “event pairs” are illustrated, one for each symbol. Each pair of events from
panel (b) is used to calculate a single (x, y) data point in the QLG plot (a). The
fit (a) to the set of all (x, y) points is used to calculate the radial and latitudinal
gradients from the intercept and slope of the line, according to Eq. 1. When the
procedure is actually carried out all possible event pairs are used (cf. Figure 2),
unlike this example.

The QLG method proceeds by calculating x and y for all possible pairs
of separate event measurements j(r, λ, t). These pairs include events at different

times along the same spacecraft trajectories—“self-pairs”—as well as pairs that
use both spacecraft (see Figure 1b for a schematic example). Once all pairs are

calculated, the (x, y) data are plotted and fitted with a line (Figure 1a). The slope

and intercept of this fit determine gλ and gr. Note that only selected pairs—not
all possible pairs—are illustrated in Figure 1, to prevent clutter, but for the data

displayed in Figure 2 the result of all possible event pairs is shown. The self-pair
data is what suggested the use of “quasi-local” in naming the QLG method, since

the locality of the measurement is only restricted by the cadence of the averaging
interval, unlike the NLG method which obtains a gradient “between” a given set

of spacecraft.

2. Validity of the QLG and NLG Methods

Both the QLG and the NLG methods rely on certain, analogous, assump-

tions that do not hold in all cases. The QLG method has lower temporal resolu-
tion, but higher spatial resolution (limited by the data cadence), while NLG has

lower spatial and higher temporal (limited by the data cadence) resolution. QLG
relies on an assumption about the temporal variations (e.g., steady state) over
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Fig. 2. Over 11,000 event pairs are plotted using a color scale in this QLG plot for V1
& V2 12–39 MeV/nuc ACR O, based on 26-day averaged intensity measurements
[2]. The linear fit to these data points yields the intensity gradients shown, where
Eq. 1 was used. This analysis must be carried out for each species and energy range
desired (see Figure 3 for a summary of these results).

sizable periods of time, while NLG requires symmetry and simplicity of the spatial

variations over large distances. For high-energy ACRs the spatial gradients are
very small as are the time variations, so both methods are likely to be in general

agreement, as we observe [1]. For Galactic cosmic rays the spatial gradients are
small, but temporal variations may last longer into the recovery period, so the

NLG method is likely to be superior to QLG. For low energy ACRs, large spatial

gradients are expected, but there is significant evidence that steady state condi-
tions prevail [1], so the QLG would be expected to be valid. The NLG method

might fail in this scenario, since the large spatial variations over vast regions of the
heliosphere are poorly known. For example, since a third spacecraft is required,

use of the NLG method must employ measurements from Pioneer 10 (P10), which
is on the opposite side of the Sun than V1 and V2. Any use of P10 is conjunction

with V1 and V2 requires a significant assumption about the global morphology
of the heliosphere. This assumption is minimized in the QLG calculations since

V1 and V2 are both closer to the apex direction of the heliosphere. This is an
example of a circumstance where we argue it is preferable to use the QLG method

rather than the NLG method. Of course, were three or more spacecraft in close
proximity to one another, one would prefer the NLG to the QLG method, but

this is not the case in the outer heliosphere.
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Fig. 3. V1 & V2 ACR H, He, & O (a) radial and (b) latitudinal gradients, 1994–1999.

3. Radial and Latitudinal Gradients

In Figure 3 we display the gλ and gr values for ACRs calculated using the

QLG technique with V1 & V2 H, He, and O measurements. They are plotted as a
function of rigidity, along with results from a numerical, time-dependent transport

model and a simultaneous phenomenological fit to all of the LECP ACR data [1].
In Figure 3a, the general agreement between these three methods can be seen. In

Figure 3b the spherically symmetric transport model makes no direct prediction
regarding latitude, so only the two remaining methods are shown, also in general

agreement. In addition to this, the ratio of the nominal drift velocity to solar wind
velocity is shown, suggesting that the negative latitudinal gradients occur for the

lowest rigidity ACRs, where drifts are less important. A possible mechanism

causing the gλ < 0 result is the latitudinal dependence of the solar wind speed,
with the high latitude, high speed wind tending to impede the entrance of ACRs

into the heliosphere relative to low latitudes.
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