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Abstract

It is shown that the widely used Force-Field (FF) approximation to the

cosmic ray transport equation (TPE) does not work well in the outer heliopshere,
in particular for anomalous cosmic rays (ACRs). The even simpler Convection-

Diffusion (CD) approximation produces better results in the outer heliosphere.
Using a simple 1D solution to the TPE for comparison, we show that the widely

used FF and CD approximations are poor in commonly occurring situations. The
FF fares badly in the outer heliosphere and for ACRs in general, while the CD is

only appropriate in the outer heliosphere. A full 1D solution is provided in the
hope that it may be more commonly used instead of these approximations.

1. Introduction

The Force-Field approximation to the cosmic ray transport equation [1,2]

is widely used, because it characterizes the entire modulation process by a single
parameter, the so-called Force-Field (FF) potential, ϕ, ranging from about 300

to 1000 MV from solar minimum to solar maximum conditions. The cosmic ray
transport equation for the evolution of the cosmic ray distribution function f in

terms of particle momentum p, can be written in the two equivalent forms

∂f/∂t + ∇ · (CVf −K · ∇f) +
1

3p2

∂

∂p
(p3V · ∇f) = Q and

∂f/∂t + ∇ · (Vf −K · ∇f) − 1

3p2
(∇ · V)

∂

∂p
(p3f) = Q

where V is the solar wind velocity and K is the diffusion tensor containing ele-

ments describing diffusion along the field, perpendicular to it, as well as gradient

and curvature drifts. The quantity C = −1/3(∂lnf/∂lnp) is the Compton-Getting
factor. The FF approximation assumes that (a) there are no sources, Q = 0, (b)

there is a steady state, ∂f/∂t = 0, and (c) that the adiabatic energy loss rate
< dp/dt >= (p/3)V · ∇f/f = 0, so that the first form of the equation above

reduces to CVf −K · ∇f = constant = 0. If there is also spherical symmetry, it
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reduces to CV f − κ∂f/∂r = 0, where the entire diffusion tensor K has collapsed
to a single effective radial coefficient κ. When C is introduced explicitly, this

equation becomes (V p/3)∂f/∂p + κ∂f/∂r = 0, with solution f(r, p) = fb(rb, pb)
along contours dp/dr = V p/3κ. The subscript b designates values on the outer

boundary of the modulation region. If the diffusion coefficient is separable in the
form κ = βκ1(r)κ2(p), the contours can be integrated to give

∫ pb

p
(βκ2/p)dp =

∫ rb

r
(V/3κ1)dr ≡ φ. (1)

When κ2 ∝ p and β ≈ 1 the solution reduces to the very widely used form

pb − p = φ ≈ 300 to 1000 MeV/c. (2)

φ is a momentum loss, but it can alternatively be expressed as an energy loss
or a modulation potential through the definition of rigidity by P = pc/q =

A/Z
√

(T (T + 2E0), where A and Z are mass and charge number, and T is kinetic

energy per nucleon. We note that (a) it is ironic that one ends up with a modula-
tion potential when the original assumption was that there are no energy losses,

and (b) it is often forgotten that the simple FF potential in the form (2) only
holds for the special rigidity dependence of κ. More generally, the FF parameter

is actually κ2/φ, as emphasized by [2].
An almost equivalent approximation follows from the second form of the transport

equation if Q, ∂f/∂t, and the third term (which is not the energy loss; see e.g.
[4]) are again set equal to zero . This results in the so-called Convection-Diffusion

(CD) equation, V f − κ∂f/∂r = 0, with solution

f = fbe
−M , where M =

∫ rb

r

V dr

κ
(3)

The modulation function M is related to the FF parameter φ through M =
3φ/βκ2, but it is defined dimensionless.

2. Validity of the two approximations

The solid lines in Figure 1 show numerical solutions of the steady state
spherically symmetric transport equation

3p2∂/∂r[r2(V f − κ∂f/∂r)] − ∂/∂r(r2V )∂/∂p(p3f) = 0, (4)

while the dashed and dotted lines are the equivalent FF and CD solutions (1)
and (3). The intensities w.r.t. kinetic energy, j = p2f , and the radial intensity

gradients, gr = (1/j)∂j/∂r , are shown for both GCRs and ACRs. The outer
boundary distance of the heliosphere was chosen at rb = 120 AU, a radial diffu-

sion mean free path λ = 3κ/ν = 0.25P (GV) AU, with ν = βc the particle
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speed, and a solar wind speed V = 400 km/s were used. The combination of
these parameters gives M(1 AU) = 1.44/βP , and φ(1 AU) = 474 MV. The

LIS for GCRs was chosen as jb = p2fb = 10β/(T + E0/2)2.6, while for ACR
protons the form jb = (0.36/T )exp[−0.189(T/0.36)2.029] was used. The validity

to represent ACR acceleration in the solar wind termination shock by such an
effective spectrum on a passive outer boundary, was demonstrated by [3].

For GCRs in the inner heliosphere, the FF is quite good, as expected, because
this is after all the situation for which it was developed. It is also a much better

approximation than the CD, mainly because the latter makes no reference to

energy losses. In the outer heliosphere however, e.g. 80 AU, the FF is not really
superior to the CD. For ACRs, with their much steeper spectra on the other hand,

the FF solutions in the inner heliosphere are entirely off scale, while the CD is
far too steep and peaked. Both are very poor approximations to the numerical

solution in this case. It is interesting, however, that in the outer heliosphere the
CD approximation is much better than the FF approximation.

These effects are better demonstrated in the radial gradients of Figure 2 (left
panel). For GCRs, the FF gradients, gr = CV/κ , agree well with the true

gradients at high energies, as is well-known, but the ACR FF gradients are about
an order of magnitude too large at all energies. Notice that the gradient predicted

by the CD is just the single dotted line given by gr = V/κ. We note that the
upturn in the ACR gradients at high energies is solely due to the spectral form

there. In the right panel of Figure 2, the ACR spectrum on the boundary was
modified so that it continues as a power law with spectral index −12.8 for T >

190 MeV. Small changes on such steep spectra clearly have a huge effect on the

gradients.

3. Numerical Solution

A short (12 lines long) Crank-Nicholson solution of the 1D transport equa-
tion (4) is made freely available for download at the address below. It is recom-

mended for use where the FF is currently employed. It is as simple to use as
the FF, and because it includes energy losses correctly, it gives a more reliable

representation of the modulation.

http://www.puk.ac.za/physics/Physics%20Web/Research/mod1Dsimple.f
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Fig. 1. Full 1-D, Force-Field and Convection-Diffusion solutions of the transport
equation for GCR (multiplied by factors of 100.5) and ACR protons in a helio-
sphere with rb = 90 AU, V = 400 km/s, λ = 0.25P (GV) AU, κ = λv/3, and
φ(1 AU) = 474 MV.
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Fig. 2. Radial intensity gradients, calculated as g = ln(j2/j1)/(r2−r1), for GCR and
ACR protons (left), and ACR gradients for a varied boundary spectrum (right).


