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Abstract

The anomalous particle transport induced by magnetic field line structure
is studied. Various expressions are known in the literature, which describe the

perpendicular diffusion coefficients of different transport regimes. We investigate
the problem from a new point of view, using the methods of mixing in chaotic

flows. It is shown that the influence of the magnetic properties could be discussed
in this general way. New possible regimes are discovered. If we adopt the usual

assumptions for the magnetic properties, mainly the parallel diffusion coefficient
governs the anomalous perpendicular diffusion.

1. Introduction

Cosmic ray transport normal to the regular component of the Heliospheric
Magnetic Field is a complex problem. There is a consensus in the literature

that the magnetic field line structure plays an important role in the perpendic-
ular transport. The fluctuating super-Alfvénic flow of the solar wind tangles up

the magnetic field lines, which are frozen in the plasma. The resulting complex
magnetic background highly influences the motion of the supra-thermal charged

particles of relatively low rigidity. The particles generally move along the field

lines of this very complex magnetic field structure. Initially neighboring parti-
cles can move away in the direction perpendicular to the mean field without real

cross-field motion. Various expressions are known describing the perpendicular
diffusion coefficients of different transport regimes [3]. It is our purpose here to

find a new approach, which allows us to investigate the different regimes in a
generalized framework.

2. Mixing

We would like to direct the attention to the similarity of this transport

process with the phenomenon of fluid mixing. Mixing is the result of complex

interaction between flow and events occurring at small length scales, where the
role of the diffusion became important. The particles of an ink-drop diffuse very

slowly into the remaining part of the fluid, if the fluid is not stirred. On the
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other hand, the chaotic flow of the fluid deforms the ink-drop into a highly frag-
mented fractal-like structure; this diffusionless mechanism is called stirring in the

literature of chaotic flows. The ink/fluid interface area increases extremely, the
concentration gradients become very high and the diffusion, which is very slow

unaided, can rapidly flatten out the structure. More precisely this applies only
for closed flows without modifications.

In our problem, the field line mixing produces a very complex magnetic
structure; field line patches (small areas chosen perpendicular to the mean field)

develop into fractal-like configurations if we examine their shape in different points

along the mean field direction. Particles, which tend to follow field lines, can move
only in these field line bands without perpendicular diffusion. While the particle

motion is constrained to the field line bands, this is a complicated non-diffusive
motion[2]. The space volume, which the particles can reach increases as

√
t with

time. If a little perpendicular diffusion is possible, the motion is completely
different [1,5] the particle motion is diffusive.

Where the characteristic width of the offshoots of patches become so small
that the diffusion become important, particles can escape from the field line bands

and the complex structure will be flatten out. For large t, the space volume, which
the particles can reach increases with time diffusively, the motion can be described

with an effective diffusion tensor. The critical parameter in both phenomena is the
length scale δeq, where the effects of stirring and diffusion become roughly equal.

The evolution of the field line patch can be treated as a two dimensional mixing,
where the distance along the mean field direction plays the role of the time variable

of the mixing problem. As it is common in the investigation of the two dimensional

chaotic flows, we can further simplify the problem to discover the length δeq. The
local behavior of an offshoot (filament) of the patch can be studied in a reduced

one dimensional model. In the presence of chaotic two-dimensional transport
one can assign to any points of the flow a convergent and a divergent direction.

The patches tend to be elongated exponentially in the divergent direction, and
become more and more narrow in the transverse, convergent direction. Gradients

are enhanced exponentially in this convergent direction. The stirring process
always dominates in the stretching direction, but not in the transverse. Now we

are interested in the critical length scale, which is determined by the evolution of
the transverse profile. The width (δ) of the filament after a ∆t time step can be

described as,
δ(t + ∆t) = F (∆s/L) δ(t) + G(∆t, κ⊥), (1)

where the first term of the right hand side is responsible for stirring, the second
for diffusion, and ∆s is the average distance, what the particles travel along the

mean field direction in a time ∆t. It is common to use F (∆s/L) = exp (−∆s/L),
where the L length scale of the mixing is the reciprocal of the so-called Lyapunov

exponent λ. We only use here that the F function can be approximated as
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F (∆s/L) ≈ 1 − ∆s/L. When δ is small enough, the two effects eliminate each
other, δ(t+∆t) = δ(t) ≡ δeq, and the area of the filament increases exponentially

while the envelope area of the field line patch will be smoothly filled with the
particles.

3. Diffusion

Many papers using the classical result of Rechester and Rosenbluth [5]

define ∆s as ∆s = v∆t for collisionless ∆s =
√

κ‖∆t for collisional case; and

the function G as G =
√

κ⊥∆t for collisionless and G =
√

κ⊥∆t = ∆s
√

κ⊥/κ‖
for collisional case. There are a few problems with this approach: at first, if
the perpendicular scattering events are more rare than the parallel scattering

events, why is it possible to describe the parallel motion as scatter free, and the
perpendicular as diffusion? Next, these expressions do not include the gradient

enhancement in the convergent direction, which makes the diffusion more rapid.
The second question answers the first, diffusion is driven by the gradient of the

concentration (temperature, etc.) field. If the tangent profile of the field becomes
more and more narrow due to the stirring, the gradient, as well as the diffusive

broadening of the profile is intensified, which opens the mentioned possibility.
But the definition of ∆s and G must be revised in view of the gradient

changes. The classical calculations used that well-known solutions of the diffusion
equation, in which a quantity of heat/solute is diffusing into a (semi-)infinite

body. The diffusive broadening of this solution can be described as δ(t) ≈ √
κt.

Qualitative considerations or a simple derivation gives us that the characteristic

width of this solution changes by ∆δ = ∂
∂t

δ ∆t ≈ κ
δ
∆t after a ∆t time step. So

we have to re-define G as G = κ⊥
δ

∆t in both collisionless and collisional case, and
∆s =

κ‖
l
∆t for the collisional case. Here l is the extent of the profile parallel to

the mean field.
For the collisional case there is another possibility, namely when the par-

ticles of our interest are generated by a constant source. In that case the parallel
particle motion can be better described asymptotically by a steady flow instead

of diffusion. In that case the complex shaped field line band is filled with a
steady-state particle cloud, particles diffusively escape through the boundary of

the narrow filaments, and the source recovers this loss. ∆s = veff∆t, where veff

is the effective particle speed parallel to the mean field direction. Other, more

difficult motions are possible, depending on that which solutions of the diffusion
equation can be applied for the parallel and which for the perpendicular transport.

It is easy to calculate using the definition of δeq that this length scale is,

δeq =
√

κ⊥/λv =
√

κ⊥L/v, which is very similar to the well-known
√

κ⊥/λ result
of fluid mixing [4], except the anisotropy and presence of v. The speed arise here,

because the distance along the mean field direction substitutes the time variable



3722

of the mixing problem.
For the collisional, parallel steady flow case the result is similar, but the

effective speed veff arise in the expression.

For the collisional, parallel diffusion case δeq =
√

κ⊥L l/κ‖ =
√

κ⊥L
κ‖/l

. There

is an l dependence in this expression, which means that the equilibrium with of

the filaments grows with the parallel distance.
Interestingly, although the microscopic description is significantly different

from the classical method, the resulting effective perpendicular diffusion constant
is quite similar to the classical result for the formerly known collisionless and

collisional parallel diffusion cases of closed flow. The parallel time and length
scales of decorrelation (td, l) only have logarithmic dependence on δeq. If we

assume that the effective diffusion coefficient is D⊥ = Dml/td [1,3], we get the
classical result for the collisionless scale. For the collisional, parallel steady flow

case D⊥ = Dmveff . For the parallel diffusion case we can calculate that l ≈
l + 1/2 ln (l) = L ln (L0/

√
Lκ⊥/κ‖), where L0 is the width of the source. Thus

D⊥ = Dmκ‖/L ln (L0/
√

Lκ⊥/κ‖). Since there is only logarithmic dependence

on κ⊥ the parallel perpendicular diffusion dominates the effective perpendicular
diffusion as well.

4. Conclusions

The description of charged particle transport induced by the magnetic field
line structure is improved using the methods of the chaotic mixing phenomenon.

The results depend on that which solutions of the diffusion equation can be ap-
plied for the parallel and which for the perpendicular transport. There could

be new regimes depending on the properties of particle source. We have briefly
investigated the parallel streaming case. Assuming that the field line separation

is diffusive we have calculated the effective perpendicular diffusion constant for
two classical and one new regimes. Our approach can be applied when the field

lines are mixed by an open flow. The particle motion will more complex in such
cases, diffusive and non-diffusive regimes are possible.
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