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Abstract

Cosmic rays impacting a spacecraft have already passed through and in-
teracted with the turbulent solar wind surrounding the spacecraft; therefore, they

carry information on the detailed structure of the turbulence. In particular, the
simple unlagged correlation between the magnetic fluctuations and fluctuations

of the cosmic ray flux, first discussed by Bieber [1987], can potentially provide
unique information on the detailed nature of interplanetary magnetic turbulence.

Starting with the Vlasov equation, subject to the usual quasilinear approxima-
tions, we derive the leading-order approximation of the particle-field correlation

for a general turbulent geometry, including non-axisymmetric turbulence, in a
plasma flowing in an arbitrary direction with respect to the average magnetic

field.

1. Introduction

Casual inspection of the physical parameters in the interplanetary medium,

such as the interplanetary magnetic field (IMF), reveals the existence of statis-
tically significant fluctuations. Studies in solar wind turbulence focus on deter-

mining the origin, characteristics, and dynamic evolution of these fluctuations.
The statistical moments of the fluctuating quantities, such as the average and

the correlation tensor, serve as one of the most important theoretical and obser-
vational tools in the analysis of the fluctuating parameters studied in solar wind

turbulence.
A spacecraft measuring IMF fluctuations will yield only a one-dimensional,

or “reduced”, spectrum of the turbulence corresponding to fluctuations sampled

along the solar wind flow direction. This reduced spectrum cannot adequately
characterize the potentially rich three-dimensional structure of the turbulence.

However, energetic particles, such as cosmic rays, impacting the spacecraft have
already passed through and interacted with the turbulent field surrounding the

spacecraft, and they, in some sense, act as remote probes which carry information
on the detailed structure of the turbulence [Bieber, 1990]. In particular, the

simple unlagged correlation between the magnetic fluctuations and fluctuations
of the cosmic ray flux,

〈
δB δf

〉
, which is a measurable quantity, can potentially
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provide unique information on the three-dimensional structure of interplanetary
magnetic turbulence [Bieber, 1987].

This work, which represents a portion of the Ph.D. thesis of de Koning
[2003], extends the theory of Bieber [1987, 1990] by considering the particle-field

correlation for a general turbulent geometry in a plasma flowing in an arbitrary
direction with respect to the average magnetic field.

2. Quasilinear Theory

The Vlasov equation, subject to the usual quasilinear approximations, re-
turns a formal solution for the the turbulent phase space density,

δf = δf0 − e

∫ t

0

εı
k( t̄ ) ∆V 

( p̄ ) δBk
( x̄, t̄ ) ∂pı

〈
f ( x̄, p̄, t̄ )

〉
dt̄, (1)

where e denotes the electric charge, δBk denotes the turbulent magnetic field,
and ∂pı

〈
f
〉

denotes the momentum gradient of the average phase space density.

In addition, the time dependence of the Levi-Civita tensor, εı
k, indicates that

the generalized coordinate basis describing the underlying manifold can change

from point to point. The term ∆V 
( p̄ ) = V 

SW − v reflects the role of the flowing

plasma in generating particle fluctuations. The solar wind velocity arises from the
inclusion of the electric field, which, in an infinitely conducting, flowing plasma,

such as the solar wind plasma, is Eı = −eεı
kV


SWB

k. When δVSW/VSW � δB/B,
then δEı = −eεı

kV

SW δB

k.

To obtain
〈
δB �̂δf

〉
, multiply both sides of Eq. 1 by δB �̂

(x, t ) and ensemble

average; when δf0 = 0 in all ensemble realizations, this returns

〈
δB �̂δf

〉
= −e

∫ ∞

0

εı
k(τ )M k

k̂(τ ) ∆V 
( p̄ )R k̂�̂

(χ, τ ) ∂pı

〈
f ( x̄, p̄, t− τ )

〉
dτ, (2)

where, by definition, the correlation tensor, R k̂�̂
(χ, τ ) ≡ 〈

δB �̂
(x, t ) δBk

( x̄, t̄ )
〉
, for

x̄ = x−χ and t̄ = t−τ . In addition, M k
k̂ denotes the transformation matrix from

a general coordinate basis to the Cartesian coordinate basis. Notice the change
of integrating variable from t̄ to τ . Also notice that the upper limit of integration

is ∞; this applies to large t when R k̂�̂ approximately has bounded support on
the interval [−λC , λC ], where λC denotes the magnetic correlation length, and

[−τC , τC ], where τC denotes the magnetic decorrelation time.

3. The Particle-Field Correlation

For a pure first-order anisotropy, the average phase space density is〈
f
〉

= f0

[
1 + â01µ+ (1 − µ2)1/2(â11 cosφ+ b̂11 sinφ)

]
, (3)
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where φ denotes the particle gyrophase and µ = cos θ denotes the cosine of
the particle pitch-angle. Using a pure first-order anisotropy, the leading order

particle-field correlation is [see de Koning, 2003, for details on the leading-order
approximations of all the terms in Eq. 2]

C̃ ŝ
fB

= −â01e
v

p
(1 − µ2)1/2

[
Ct yŝ(Ωτ) − St xŝ(Ωτ)

]
f0 (A)

− eVSW cosψ (1 − µ2)1/2
[
Ct yŝ(Ωτ) − St xŝ(Ωτ)

] ∂〈f 〉
∂p

(B)

+ eVSW sinψ cosφ
[
µCt yŝ(0) − (1 − µ2)1/2 St zŝ(Ωτ)

]∂〈f 〉
∂p

(C)

+ eVSW sinψ sinφ
[
µCt xŝ(0) − (1 − µ2)1/2 Ct zŝ(Ωτ)

]∂〈f 〉
∂p

(C)

−
{
â11µ

[
Ct yŝ(2Ωτ) − St xŝ(2Ωτ)

]
+ b̂11µ

[
Ct xŝ(2Ωτ) + St yŝ(2Ωτ)

]
+ (1 − µ2)1/2

[
â11St

zŝ(Ωτ) − b̂11Ct zŝ(Ωτ)
]}

e
v

p
f0 cosφ (4)

+

{
â11µ

[
Ct xŝ(2Ωτ) + St yŝ(2Ωτ)

]
− b̂11µ

[
Ct yŝ(2Ωτ) − St xŝ(2Ωτ)

]
− (1 − µ2)1/2

[
â11Ct zŝ(Ωτ) + b̂11St

zŝ(Ωτ)
]}

e
v

p
f0 sinφ,

where C̃ ŝ
fB

≡ O ŝ
�̂(φ)

〈
δB �̂ δf

〉
and O ŝ

�̂(φ) denotes a rotation through an angle
φ counterclockwise about the z-axis. In addition, Ω denotes the particle gyro-

frequency. For the sake of brevity, we introduced the turbulence integrals

Ct ı(φ) ≡
∫ ∞

0

R̃ ı̂̂
( χ̃, τ ) cosφ dτ, (5-1)

St ı(φ) ≡
∫ ∞

0

R̃ ı̂̂
( χ̃, τ ) sinφ dτ, (5-2)

where R̃ q̂ŝ
( χ̃, τ ) = O q̂

k̂(φ )R k̂�̂
( χ, τ )O†

�̂
ŝ
(φ ) and χ̃â = O â

b̂(φ )χb̂. More explicitly,

the rotated lagged position is

χ̃x = RL sin θ sin Ωτ + τVSW sinψ cosφ, (6-1)

χ̃y = RL sin θ
(
1 − cos Ωτ

) − τVSW sinψ sinφ, (6-2)

χ̃z = µvτ. (6-3)

Equation 4 expresses the central result of this work; this equation is the

leading order expression of the particle-field correlation for completely general
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homogeneous and stationary turbulence geometry and a pure first order cosmic
ray anisotropy in a flowing plasma. Equation 4 applies to simple turbulent ge-

ometries, such as slab turbulence, as well as completely general geometries, such
as non-axisymmetric turbulence.

Notice the symmetry between the three components of the particle-field
correlation. For ŝ = (x, y, z), line A expresses the solar wind independent gy-

rotropic component of the particle-field correlation; line B expresses the solar
wind dependent gyrotropic component; line C expresses the solar wind depen-

dent gyro-anisotropic component; and the unmarked lines express the solar wind

independent gyro-anisotropic component. Notice that the solar wind indepen-
dent gyrotropic component, line A, depends on the field-aligned anisotropy, â01,

while the solar wind independent gyro-anisotropic terms depend on the non-field-
aligned anisotropy, â11 and b̂11. Furthermore, notice that in the solar wind in-

dependent gyro-anisotropic terms, some of the turbulence integrals are evaluated
at 2Ω, whereas in the solar wind dependent gyro-anisotropic terms, some of the

turbulence integrals are evaluated at zero frequency. Finally, notice that the z-
component of the particle-field correlation, C̃ 3̂

fB
=

〈
δBz δf

〉
, only depends on Rzŝ

and R ŝz.
In summary, the rotated particle-field correlation has the form,

C̃ ı̂
fB

= cı̂g(p, µ) − cı̂c(p, µ) cosφ− cı̂s(p, µ) sinφ. (7)

which clearly expresses the gyrophase dependence of the rotated particle-field
correlation.
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