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Abstract

We discuss some fundamental properties of pitch angle diffusion of charged

particles by MHD waves by performing test particle simulations. Even at a mod-
erate normalized turbulence level (turbulence magnetic field energy density nor-

malized to the background field energy density ∼ 0.1), both the mirroring and
the resonance broadening effects become important, and the diffusion starts to

deviate substantially from the standard quasi-linear diffusion model. Some other
outstanding consequences of the finite amplitude of the waves are the dependence

of the diffusion coefficients on spatial and temporal scales, and the effect of phase
coherence among MHD waves, as evidenced by recent spacecraft data analysis.

1. Introduction

Transport of energetic particles (cosmic rays) by MHD turbulence is one
of the key issues in space and astro-plasma physics. Pitch angle diffusion is

fundamental to other transport processes such as the energy and the parallel
diffusion[4,9,10,11]. For the discussion of the various transport processes, the

quasi-linear theory is frequently used, in which two assumptions are fundamen-
tal. First, the turbulence amplitude is sufficiently small, so that truncation at

the second power of the turbulence is guaranteed. Second, the wave phases are
random (random phase approximation), so that any effect of mode-mode coher-

ence is destroyed by phase mixing. However, the MHD turbulence in space does
not necessarily satisfy these assumptions: in particular, the waves excited near

collisionless shocks have the wave magnetic field amplitude comparable or even
larger than the background field. Also, their waveforms show consequences of

strong nonlinear evolution (e.g., the shocklets found in the earth’s foreshock re-

gion [3]), suggesting the presence of the phase coherence [2]. From this viewpoint,
we discuss the pitch angle diffusion of energetic particles by MHD waves, which

are not necessarily small amplitude, and their phases not necessarily random,
by numericallly integrating in time the equations of motion of charged particles

under influence of given MHD turbulence.
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Fig. 1. Time evolution of µ for δB = 0.01.

2. Model

We employ the so-called slab model for the MHD turbulence, although
this is probably an over-simplification for the turbulence in reality (e.g., in the

solar wind [8]). Within this model, the fluctuation electromagnetic field is given

as a superposition of parallel propagating, circularly polarized finite amplitude
Alfven waves, with different wave numbers and different polarizations. Since the

typical particle velocity far exceeds the Alfven wave speed, we let the waves to
be non-propagating: within this system, particle energy is conserved. For both

groups of waves with different polarizations, we assume that the wave spectrum
is given by a power law (with an index γ), and their phases be related by the

iteration formula defined in (4) of [6].

3. Results

Figure 1 shows the time evolution of distribution of particle pitch angle

cosine, µ, defined as an inner product of the unit vectors parallel to the particle
velocity and the local magnetic field. For each panel, the horizontal axis represents

the initial distribution, µ(0), and the vertical axis denotes the distribution at some
later times, µ(τ). Each dot represents a single test particle. Important parameters

used here are: γ = 1.5, cφ = 0 (random phase), and the variance of the normalized
perpendicular magnetic field fluctuations, δB = 0.01. At τ = 1, the distribution

Fig. 2. Time evolution of µ for δB = 0.1. Non-compressional turbulence is used for
the run shown in the right most panel.
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Fig. 3. Right panels: D versus µ. Left panel: D versus δB.

of µ has not evolved much, and so the dots are almost aligned along the diagonal
line. Later at τ = 16, pitch angle diffusion is more evident, but is still absent

around µ ∼ 0 and |µ| ∼ 1. The former is due to the lack of waves which resonae
with near 90 degrees pitch angle, and the latter is simply due to geometry. Even

later time at τ = 256, substantially longer than the pitch angle diffusion time
scale, it is clear that the majority of particles stay within the hemisphere they

belonged to initially.
Three panels from the left in Figure 2 show the same plots as before except

that the turbulence level is increased to δB = 0.1, keeping other parameters
unchanged. From the comparison of the two runs it is clear that not only the

diffusion occurs at a faster time scale but also that many particles traverse the
90 degree pitch angle. This is mainly due to the mirroring and the resonance

broadening, both of which are the consequences of finite amplitude waves. We can

separate these two effects by making the turbulence non-compressional, b′(x) =
δB b(x)/|b(x)|, where b(x) is the given compressional turbulence (the power

spectrum and the phase distribution of b(x) and b′(x) are not exactly the same).
The distribution of µ as diffused by such a non-compressional turbulence is shown

in the right most panel of Figure 2. Although the number of particles crossing the
90 degrees pitch angle is less compared with the compressional case, it is shown

that the resonance broadening alone can mix the particles across µ = 0.
Figure 3 summarizes the numerically evaluated pitch angle diffusion coef-

ficient, D, compared with the value obtained from the quasi-linear theory,

DQL =
πe2

2m2c2v|µ|(1 − µ2)P (kr), (1)

where kr = −Ω/vµ is the resonance wave number, P (k) is the wave power spec-



3712

trum, Ω is the particle gyro-frequency, and other notations are standard [1,5,7].
Four panels in the left show D versus µ, for various values of δB. The turbu-

lence is compressional, and the wave phases are random. When δB is small, D
is doubly peaked, as it vanishes at µ = 0, -1, and 1. However, as the turbulence

amplitude is increased, the diffusion at µ = 0 becomes drastically enhanced. At
δB ∼ 0.3, D is of the same order with respect to µ. This is also apparent in

the right panel of Figure 3, in which D is plotted against δB. When 0 < µ < 1,
numerically computed D matches well with DQL (thick broken line), while they

start to deviate around δB ∼ 0.1.

4. Discussion

From the numerical results obtained above, we are tempted to model the

pitch angle diffusion process by a simple equation,

∂f(µ)

∂t
=

∂

∂µ
D∗∂f(µ)

∂µ
− f(µ) − f(−µ)

τ(µ)
, (2)

where f(µ) is the distribution function, D∗(µ) is the (modified) pitch-angle diffu-

sion coefficient including the resonance broadening effect (and thus D∗(0) �= 0),
and τ(µ) is the time scale for the mirror reflection, which may be determined

by statistics of compressional magnetic field (one should note, however, that the
mirror reflection is not always addiabatic as assumed in (2)). If there is a finite

coherence in the MHD turbulence, as evidenced by recent spacecraft data analy-
sis[2], it strongly influences τ(µ), which in turn modifies the pitch angle diffusion.
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