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Abstract

Observations of energetic ion acceleration at interplanetary shocks some-
times indicate a spectral rollover at ∼ 0.1 to 1 MeV/nucleon. This rollover is

not well explained by finite shock width or thickness effects. At the same time, a
typical timescale of diffusive shock acceleration is several days, implying that the

process of shock acceleration at an interplanetary shock near Earth usually gives
only a mild increase in energy to an existing seed particle population. This is con-

sistent with recent analyses of ACE observations that argue for a seed population
at substantially higher energies than the solar wind. Therefore an explanation

of typical spectra of interplanetary shock-accelerated ions requires a theory of
finite-time shock acceleration, which for long times (or an unusually fast accel-

eration timescale) tends to the steady-state result of a power-law spectrum. We
present analytic and numerical models of finite-time shock acceleration. For a

given injection momentum p0, after a very short time there is only a small boost

in momentum, at intermediate times the spectrum is a power law with a hump
and steep cutoff at a critical momentum, and at longer times the critical mo-

mentum increases and the spectrum approaches the steady-state power law. The
composition dependence of the critical momentum is different from that obtained

for other cutoff mechanisms.

1. Introduction

The spectral form of [3], a power law in momentum with an exponential

rollover in energy, has proven very useful in fitting spectra of solar energetic
particles. The composition dependence of the rollover energy depends on the

physical effect that causes the rollover.
For traveling interplanetary shocks well outside the solar corona, observa-

tions typically indicate a rollover at ∼ 0.1 to 1 MeV/n. Let us consider what
physical mechanism could explain this. If there is a cutoff for κ/u on the order

of the shock thickness [3], where κ is the parallel diffusion coefficient and u is the
fluid velocity along the field, the observed long mean free paths for pickup ions [4]

would imply an extremely low cutoff energy. On the other hand, a cutoff due to
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shock-drift acceleration across the entire width of a shock (such as that inferred
for anomalous cosmic rays) is on the order of hundreds of MeV per charge unit.

We propose that the physical origin of such rollovers is the finite time avail-
able for shock acceleration. The typical acceleration timescale tacc corresponding

to observed mean free paths is on the order of several days, so the process of shock
acceleration at an interplanetary shock near Earth should usually give only a mild

increase in energy to an existing seed particle population. Indeed, recent analyses
of ACE observations argue for a seed population at substantially higher energies

than the solar wind [1]. On the other hand, finite-time shock acceleration should

yield the standard power-law spectrum in the limit of a long duration t relative
to the acceleration timescale. As a corollary of this idea, for an unusually strong

shock (unusually short acceleration timescale) it is possible to obtain power-law
spectra up to high energies (e.g., as observed by [5]). Therefore, the present work

derives a simple theory of finite-time shock acceleration and explores implications
for the composition dependence of the spectrum.

2. Analytical and Numerical Models

Consider a combinatorial model of finite-time shock acceleration assum-
ing a constant acceleration rate r (i.e., the rate of a complete cycle returning

upstream, or 1/∆t of [2]) and a constant escape rate ε. After a time t, the
distribution of residence time T is

P (T ) = εe−εT + e−εtδ(T − t). (1)

The Poisson distribution of the number of acceleration events n during T is

P (n, T ) =
(rT )n

n!
e−rT . (2)

The overall probability of n acceleration events is

P (n, t) =
∫ t

0
P (n, T )P (T )dT (3)

=
ε

r

(
r

r + ε

)n+1

e−(r+ε)t
∞∑

k=n+1

[(r + ε)t]k

k!
+ e−(r+ε)t (rt)

n

n!
. (4)

Note that the first term is an exponential in n times a Poisson probability of

> n acceleration events, and the second term, corresponding to a finite probability

of residence time T = t, is a Poisson distribution at 〈n〉 = rt. Usually ε � r so
the result (in terms of momentum) is a power law spectrum with a hump and

subsequent cutoff after ∼ rt acceleration events. A more complicated analytic
expression can be derived for the more realistic case where r and ε depend on n

(and particle momentum).
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The following system of differential equations can be shown to be equiva-
lent to the above approach, and is more convenient for computations. We express

P (n, t) as the sum of E(n, t) and A(n, t), the fraction of particles escaping and
remaining, respectively, after n acceleration events at time t. Then

dAn

dt
= −(rn + εn)An + rn−1An−1

dEn

dt
= εn−1An−1 (5)

with the initial condition A(0, 0) = 1 and all other A, E zero at t = 0.

For a general shock angle, we use rn and εn that depend on the particle
velocity vn (following [2]):

rn =
vn/4

κ1

u1
+ κ2

u2

, εn =
u2 cos θ2/ cos θ1(

κ1

u1
+ κ2

u2

)(
1 − 4u2 cos θ2

vn cos θ1

) , (6)

where θ is the field-shock normal angle, the subscript 1 refers to upstream of the

shock, and 2 refers to downstream. The particle momentum increases at each
acceleration event according to

pn

pn−1

= 1 +
4

3

u1 cos θ1 − u2 cos θ2

vn−1 cos θ1

. (7)

The differential energy spectrum vs. kinetic energy T is calculated from j(T, t) =

P (n, t)/(Tn+1 − Tn).

3. Results

Figure 1 shows results for the time-dependent energy spectrum of 4He
for an oblique shock with u1 = 540 km/s, u2 = 140 km/s, θ1 = 45◦, θ2 = 75.5◦,
κ = vλ/3, and a parallel scattering mean free path λ = 0.3 AU (based on Rankine-

Hugoniot conditions [6]). Note that this corresponds to injection at 0.01 MeV/n;
for an interplanetary shock, the resulting spectrum would be the convolution of

such a “kernel” with the seed particle spectrum.
We see that after a short time the particles receive only a small boost in

energy. At intermediate times, there is a power law at low energy and a hump
at a certain critical energy, Tc, followed by a drastic decline. The power law and

hump correspond to the two terms on the right hand side of (1); in particular,
the hump corresponds to the fraction of particles that have not yet escaped and

have a Poisson distribution of acceleration events n, with 〈n〉 ≈ rt. It is not clear
whether a hump would be expected in observations, after convolution with the

seed spectrum. The decline at high energy is qualitatively similar to that of [3];
however, we obtain a different (Q/A) dependence, as shown below. At very long

times, the classic steady-state power law is recovered.
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Fig. 1. Energy spectrum of 4He, injected at 0.01 MeV/n, after shock acceleration for
the indicated times.

For a constant acceleration rate r, i.e., a constant λ, we expect the critical
rigidity Pc to be approximately Pn for n = rt:

Pc ≈ P0 +
4

3

u1 cos θ1 − u2 cos θ2

cos θ1

mc

q
rt (8)

≈ P0 +
A

Q

mpc

e

u1 cos θ1 − u2 cos θ2

cos θ1

1
λ1

u1
+ λ2

u2

t (9)

(assuming non-relativistic particles). Thus for small P0 or long times, we ex-
pect the rollover rigidity to increase proportionally with time (with only a weak

dependence on P0), and the rollover energy to increase as t2.
Note that for the above case of constant λ the rollover velocity (vc) and

kinetic energy per nucleon (Tc/A) are independent of Q/A. For the more general
case of λ ∝ P α it can be shown that

Pc =

[
P α+1

0 +
4

3
(α + 1)

A

Q

mpc

e

u1 cos θ1 − u2 cos θ2

cos θ1
r0P

α
0 t

]1/(α+1)

, (10)

or for late times, Tc/A ∝ (Q/A)2α/(α+1). For example, if λ ∝ P 1/3 then Tc/A ∝
(Q/A)1/2, a somewhat weaker dependence than the proportionality to (Q/A) that

is sometimes assumed.
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