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Abstract

We present a novel technique to infer average ionic charge states of high

energy (≥ 10 MeV/nuc) solar energetic particles (SEPs) in large solar events. In
some large SEP events, it is observed that higher energy SEPs decay in intensity

more rapidly than at lower energies. Furthermore, this energy dependence varies
with particle species, as would be expected if the decay timescale depended on a

rigidity-dependent diffusive mean free path. By comparing the decay timescales
of nitrogen, oxygen, neon, magnesium, silicon, sulfur, and iron to a reference

element, such as carbon, charge states are inferred for these elements in several
SEP events between 1997 and 2002. There is considerable variation in the inferred

charge state of iron from event to event. For the November 6, 1997 event, charge

states are also inferred for sodium, calcium, and nickel.

1. Introduction

Solar energetic particle (SEP) events are commonly divided into two cat-
egories: gradual and impulsive [14]. An impulsive event is one in which solar

particles are accelerated in association with a solar flare. The temperature of the
material can be as high as 10 MK [7]. These events typically last less than a

day. In a gradual event, a coronal mass ejection drives a shockwave through the

corona and solar wind, accelerating ambient material. The source temperature for
particles in gradual events is found to be 2 MK, consistent with coronal material

[13]. Gradual events typically last for several days.

2. Finding Charge States: a New Method

SEPs are thought to diffuse in the inner heliosphere through pitch-angle
scatterings off turbulence in the interplanetary magnetic field (IMF). At some

outer boundary, the scattering mean free path becomes very large and the par-
ticles escape [8]. The time intensity profiles for large gradual SEP events all
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Fig. 1. Time intensity profiles for iron in the 11/6/97 event.

have roughly the same structure, as shown in Figure 1: an hours-long rise from
background, followed by a days-long exponential decay. This rise and decay cor-

responds to the filling of a diffusive cavity in the inner heliosphere, followed by
slow leakage from this cavity. It can be seen that at higher energies, iron decays

more quickly than at lower energies. In the theory, this follows from the form
of the solution for a Fokker-Planck equation that describes SEP propagation.

The characteristic decay time scale for a particle population will depend on that

population’s charge to mass ratio and energy per nucleon.
Two separate solutions to the Fokker-Planck equation, by Forman [5] and

Lupton and Stone [8,9], give reasonably accurate and consistent behavior for the
decay phase of a solar particle event. In the decay phase for any given particle

species, both solutions can be reasonably parameterized by an exponential decay
of the particle flux f of the form f = Cet/τ , where C is a constant, and the decay

constant 1/τ is given by:

1

τ
=

1

τC
+ W (αXE)γ (1)

For this equation, W is a normalization that is common to all particle
species, γ is a power law index that is set by the power spectrum of the turbulence

in the IMF, τC is a constant, and αX is a second normalization that changes from
species to species and depends on the charge state. This relationship is plotted

with data from the Solar Isotope Spectrometer aboard the Advanced Composition

Explorer for the November 6, 1997 event for carbon with QC = 5.9, and for several
charge states of iron in Figure 2. For a given SEP event, decay timescales are

found for as many elements as possible, and those decay timescales are fit to (2),
allowing W , γ, τC , and αX to float. Note that W , γ and τC are the same for all

species in a given event. In order to find the charge state for a given element,
a comparison is made to a reference element, for which αX = 1 is assumed, and
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Fig. 2. Decay rates vs. energy for carbon and iron. (See text)

whose charge state is already known or estimated. For this analysis the reference
element is carbon. Then in terms of the charge state QC and atomic mass AC of

carbon, the charge state QX of a given element of atomic mass AX is given by:

QX = α
γ/(1−2γ)
X

QC

AC
AX (2)

Figure 2, panel (a) shows the reference element, carbon. The solid line

is the curve for carbon based on the W , γ and τC fit for all the elements in the
event. Note that QC = 5.9 is assumed. In panel (b), the same solid line is shown,

along with data and calculations for iron. The dashed lines are calculations based

on the fit for (from the top) Q = 8, 12, 16, 20, and 24. The curve fit for iron in
this event is plotted as a bold dashed line. It can be seen to fall almost exactly

over the line for Q = 16. It is assumed that particle charge states do not change
with time or energy; also, only an average charge state is calculated.

3. Results and Conclusions

Figure 3 shows charge states inferred with this method for five different

solar particle events between 1997 and 2002. Superposed over those measure-

ments are the model calculations from [1] and [2] for equilibrium charge states
at various temperatures. It can be seen in the figure that most of the events are

consistent with temperatures of roughly 1-2 MK, which would be consistent with
a coronal source. However, the November 6, 1997 is more consistent with a source

temperature of 4 MK. This might indicate a mixed source, with some material
coming from a hot flare region.

In the November 6, 1997 event, SAMPEX measures a charge state for iron
of 19.6±2.4 in the energy range 15 - 70 MeV/nuc [11]. Our measurement is 1.5 σ

away from this value. For the November 2001 and April 2002 events, the charge
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Fig. 3. Inferred charge states for five different events.

states measured by Labrador et al. [6] with SAMPEX are statistically consistent
with those measured here.

The presence of flare source material in the large gradual solar event of
November 6, 1997 has been suggested by other authors [4,11,12], and would seem

to be more reason to question [3] the earlier division of impulsive and gradual
events. On the other hand, that material could also have been accelerated from

a remnant interplanetary population of solar flare particles [10].
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