A Statictical Study of ³He Enhancement in the High-Energy Solar Particles

Jarno Laivola, Jarmo Torsti, and Leon Kocharov Väisälä Institute for Space Physics and Astronomy and the Department of Physics, University of Turku, FIN-20014 Turku, Finland

Abstract

Energetic particle observations of the ERNE instrument (the Energetic and Relativistic Nuclei and Electron experiment) onboard the Solar and Heliospheric Observatory enable the measurements of the ³He flux beyond 15 MeV nucleon⁻¹ with a good statistical resolution. An overview of the ERNE observations for the period from 8 February 1999 to 7 December 2000 is reported and a comprehensive statistical study is performed to learn regularities of ³He enhancements in the high-energy range of 15–30 MeV nucleon ⁻¹. Significant intensities of ³He are detected in all event days with ⁴He intensity exceeding ≈ 0.5 ion per (m² s sr MeV nucleon⁻¹). The abundance ratio ³He/⁴He is measured to vary within the range $\sim 0.003-2$, which is well above the corresponding solar wind value. A histogram of the daily ³He/⁴He ratio reveals a sharp maximum at ³He/⁴He ≈ 0.01 .

Observations and analysis

The early studies of the ³He-rich solar energetic particle (SEP) events are mostly made in low energies, ~ 1 MeV nucleon⁻¹, (Kocharov & Kocharov 1984, Reames, Meyer, & von Rosenvinge 1994, and references therein) but some measurements beyond 10 MeV nucleon⁻¹ has been also carried out (Clayton, Guzik, & Wefel 2000, Bakaldin et al. 2003, Torsti et al. 2002, 2003, and references therein). This survey of SEP events is based on the particle flux measurements by ERNE/HED particle telescope (Torsti et al. 1995) from 8 February 1999 till 7 December 2000. Both helium isotopes, ³He and ⁴He, were detected in the energy channel 15-30 MeV nucleon⁻¹ and the average geometric factor for the studied isotopes in this channel is 30.5 cm² sr. During the selected period there were some data gaps lasting from few hours to couple of days when either the spacecraft, or more often, the instrument was not in the observation mode. There were also a couple of strong solar events, like the events in 14 July 2000 and 9 November 2000, producing the extreme particle fluxes exceeding the analysis capacity of ERNE. In those occasions, the data have been excluded from the analysis.

Figure 1 plots time profiles of ${}^{3}\text{He}$ and ${}^{4}\text{He}$ daily count rates during 1999-2000. The slowly-changing line in the uppermost panel shows a lower limit for

pp. 3233–3236 ©2003 by Universal Academy Press, Inc.

Fig. 1. Daily count rates of ³He and ⁴He in the energy range 15-30 MeV nucleon⁻¹ (histograms) and the abundance ratio ${}^{3}\text{He}/{}^{4}\text{He}$ on the ³He event days.

the selection of ³He events. This selection limit is defined to be the gliding average count rate of the preceding non-event period raised by a twofold statistical error. In the survey period ERNE made observations of at least 12 hours duration in 626 days and the total number of the observation days was 633. The ³He and ⁴He count rates exceeded the event selection limit during 167 (26 %) and 239 (38 %) days respectively. The lowest panel of Figure 1 shows the ³He/⁴He ratios on the ³He event days.

Figure 2 shows the distribution of day numbers over ⁴He intensity for all days when the ⁴He event limit was exceeded and the similar distribution containing only the ⁴He event days accompanied by a detectable ³He flux (left axis for both). Points in Figure 2 indicate the proportion of ³He enhancement days compared to the ⁴He event days (right axis). When the ⁴He intensity increases from ~ 0.003 to ~ 0.3 ⁴He ion per (m² s sr MeV nucleon⁻¹), the ³He association rises fast and for events with ⁴He intensity in excess of ≈ 0.5 (m² s sr MeV nucleon⁻¹)⁻¹ the ³He association becomes absolute. All high intensity helium events contain a measurable amount of the ³He isotope.

The left panel in Figure 3 shows the daily average 3 He intensities versus the 4 He intensities on the 3 He event days with galactic background reduced. In

Fig. 2. Histogram of the daily average background-subtracted intensity of ⁴He (thin line) and the ⁴He intensity only on the ³He event days (thick line). The points show the proportion of ³He enhancement days in the ⁴He event days.

the scatter plot one can see a clear correlation between the ³He and ⁴He intensities. Most of the events are located between the ³He/⁴He ratio lines 0.005 and 0.05, especially in the strong events. In the right panel there is shown a statistical distribution of the ³He enhancement days over the ³He/⁴He ratio. A sum of a Gaussian type distribution and a quadratic function is fitted to the distribution. The fitting is carried out by GAUSSFIT routine of IDL. The new feature in the distribution is a narrow peak at ³He/⁴He ~ 0.01. It is not what one might expect on the basis of the impulsive-gradual SEP paradigm in the Reames' (1995) formulation, and in the earlier formulations of mid-1980's there is told nothing about the ³He/⁴He. The results of the survey can be summarised as follows:

- 1. Significant fluxes of ³He ions have been detected in all ⁴He events with intensity exceeding ≈ 0.5 ion of ⁴He per (m² s sr MeV nucleon⁻¹),
- 2. The most frequent ³He abundance is ³He/⁴He ~ 0.01. It seems that widely used 'normal' abundance ratio ³He/³He $\approx 5 \times 10^{-4}$ finds no support in the experimental data.
- 3. At lower frequency, the ${}^{3}\text{He}/{}^{4}\text{He}$ ratio is observed to be as high as ~ 0.1–1.

Acknowledgements This work was supported by the Academy of Finland, grant number 53543. The work of J. L. was also supported by Vilho, Yrjö,

Fig. 3. Scatter plot of ³He intensity vs. ⁴He intensity, with background reduced, on the ³He event days in the energy channels 15-30 MeV nucleon⁻¹ (left panel) and the corresponding histogram of the daily abundance ratio ³He/⁴He (right panel). Dashed lines in the left panel indicate the 0.005, 0.05 and 0.5 levels of ³He/⁴He ratio.

and Kalle Väisälä Fund / Finnish Academy of Science and Letters. SOHO is an international cooperation project between ESA and NASA.

References

3236 ·

- 1. Bakaldin, A., Galper, A., Kodashov S. et al. 2002, ApJ 577, 513
- 2. Clayton, E. G., Guzik, T. G., & Wefel, J. P. 2000, Sol. Phys., 195, 175
- 3. Kocharov, L. G., & Kocharov, G. E. 1984, Space Sci.Rev., 38, 89
- 4. Reames, D. V., Meyer, J. P., & von Rosenvinge, T. T. 1994, ApJS, 90, 649
- 5. Reames, D. V. 1995, Rev. Geophys., 33, 585
- 6. Torsti, J., Valtonen, E., Lumme, M., et al. 1995, Sol. Phys, 162, 505
- Torsti, J., Kocharov, L., Laivola, J., Lehtinen, N., Kaiser, M.L., & Reiner, M. J. 2002, ApJ, 573, L59
- 8. Torsti, J., Kocharov, L., Laivola, Chertok, I., & Thompson, B. J. 2003, Sol. Phys., in press