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Abstract

The asymptotically flat space-time with scalar fields is studied. It shows

that the concepts of Bondi mass, Bondi mass loss, etc., are also applicable to other
fields, although they were originally defined by gravity. The generating formulae

of Bondi mass loss and angular momentum loss by a dynamics Hamiltonian over
a hyperboloid are given by the linearised theory.

1. Introduction

Applying the concept of quasi-local definition for gravity [1, 2, 3, 4], a
dynamical Hamiltonian in an asymptotically flat space-time is discussed here. A

hyperboloid is considered. Define Bondi mass by the Hamiltonian (not necessarily
the gravity) on the hyperboloid and the Bondi mass loss can be interpreted if the

Hamiltonian is not conserved in the time (or retarded) coordinate, i.e.,

∂0

∫
HdV �= 0 (1)

where H is the Hamiltonian density and dV is the integral region of the 3-

dimensional volume over the hyperboloid. A characteristic Hamiltonian in the
space-time such that, it is analysable, at least around the future null infinity,

�+, is derived, otherwise, a general form of the Hamiltonian is sought and its
asymptotic behaviour is presented afterward. A simple case is considered here:

a space-time with scalar fields. The corresponding Bondi energy is then studied
by the linearised theory, and the generating formulae on a hyperboloid, including

Bondi mass, Bondi mass loss, and angular momentum loss are then derived.

2. Minkowski Space-Time � with Scalar Fields

Consider Minkowski space-time with scalar fields ϕ. Under the coordinate

transformation (t, r, θ, φ) �→ (s, ρ, θ, φ) = (x0, x1, x2, x3) via

r = ρ−1 , t = s+

√
1 + ρ2

ρ
(2)
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the density of Lagrangian with ϕ on a hyperboloid Σ can be written as

L = −1

2
ρ−2 sin θ

[
− (ϕ,0)

2

1 + ρ2
+

2ϕ,0ϕ,1√
1 + ρ2

+ ρ2(ϕ,1)
2 + rABϕ,Aϕ,B

]
(3)

where the metric on a unit sphere rAB satisfying rABdx
AdxB = dθ2 + sin2θφ2 on

S(s, ρ) = {x ∈ Σs|x1 = ρ = constant}, in which, Σs is the cut of 4-manifold Σ by

s = constant, i.e., Σs = {x ∈ � |x0 = s = constant}.
It is observed that the integral of such L is not convergent at infinity �+.

In order to remove such divergence, the renormalisation of L is considered by
defining a new scalar function ψ such that ψ = ρ−1ϕ. With this transformation,

define a new Lagrangian L̃ in a virtual space-time �̃ , such that

L̃ = L +
1

2
∂0

(
ρ−1ψ2 sin θ√

1 + ρ2

)
+

1

2
∂0(sin θψ

2) (4)

It can be seen that this renormalised L̃ also satisfies the variation principle in

phase space ψ and has the same Euler-Lagrange equations of motion as L in

Eq. (3) in phase space ϕ. L̃ also gives the convergent integral at infinity. Two
metrics with the transformation relation (2) have the relation dS̃2 = ρ2dS2.

Observing these two sets of space-time (�̃ , g̃) and (� , g) corresponding
two Lagrangians L̃ and L respectively, one can derive the following results.

Lemma 1 ψ satisfies wave equation �̃ψ = 0, where the conformal operator � is
defined as

� =
1√−g

∂

∂xµ

(√−ggµν ∂

∂xν

)
(5)

Lemma 2 If �̃ψ = 0, then �ϕ = 0.

Proofs for Lemma 1 and Lemma 2 are laborious but direct [11]. By these two
lemmas, one knows that the conformal transformation is asymptotically invariant.

Since the metric is asymptotically flat, the scalar curvature will therefore vanish.

3. Bondi Mass Loss at �+

In order to analyse the energy change at �+, one can therefore assume the

Bondi mass is no longer conserved at �+ so that a Dirichlet condition, ϕ |∂V=

f = f(t) on the boundary can hold. For the energy description, the energy on a
hyperboloid Σ is defined. Although energy on a hyperboloid is not a general form

of Hamiltonian, it plays an important role for the description of the radiation
at �+ [4], as this method is useful to the construction of the generation of the

Poincaré group and could be applied to the angular momentum.
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Now define the Hamiltonian density as H̃ = π0ψ,0 − L̃, in which, π0 is

time-momentum defined as π0 = ∂L̃
∂ψ,0

. As shown above for L̃, the Hamiltonian H̃
is also analytic at �+. The immediate question is: Is the Hamiltonian defined by

the choice of coordinate transformation in (2) and the renormalised L̃ in Eq. (4)
relevant for the expression of energy? That is to say, one has to certify H̃ = H,

at least at �+ for the analysis. Thus, another lemma should be derived:

Lemma 3 Under the operation of the transformation of (2) and the renormali-

sation for L̃ in (4), H̃ = H in the neighbourhood of �+.

Generally, H̃ may differ from H. However, by the conformal rescaling discussed

above, H̃ � H around �+. Detailed proof can be found in Ref. [11].
With this scaled H̃, the time-variation of H̃ then reduces to

∂0

∫
Σ

H̃ =

∫
∂Σ

π1ψ̇ �
∫
S(s,0)

(− sin θψ̇2) (6)

on the hyperboloid Σ and its boundary, ∂Σ, in which, ∂Σ = S(s, ρ = 0) at

infinity. Since the boundary term in Eq. (6) doesn’t vanish, the Hamiltonian

is not conserved in time either at �+. Thus, Eq. (6) can be treated as the
interpretation of Bondi mass loss.

4. Angular Momentum at �+

When defining angular momentum, one can treat angular momentum along
z-axis on Σ, Jz, as the generator for a Killing vector field ∂

∂φ
, then shift it to �+.

By doing so, one can obtain

− δJz =

∫
Σ

(π,φδψ − ψ,φδπ) = −δ
∫

Σ

πψ,φ +

∫
Σ

πδψ,φ (7)

Applying Euler-Lagrange equation of motion, the time-variation of the angular

momentum, ∂0Jz, can be written as

− ∂0Jz = −∂0

∫
Σ

πψ,φ =

∫
∂Σ

π1ψ,φ �
∫
S(s,0)

sin θψ̇ψ,φ (8)

Eq. (8) then interprets the angular momentum loss.
Observing Eqs. (6) and (8), one can formulate consequently

Theorem 1 If Bondi mass is conserved at �+, then the angular momentum Jz
is also conserved.

This result is an immediate consequence by setting ∂0

∫
Σ
H̃ = 0 in Eq. (6). This

important consequence shows that, if without loss of Bondi mass, it is impossible

to radiate away angular momentum [4], i.e., there is no news function [12], and the
fields will be the same no matter to observe it by taking a spacelike hypersurface

or by taking a null infinite hypersurface.
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5. Conclusions

By the linearised theory, a dynamical Hamiltonian of scalar fields is anal-
ysed and reduced to gauge-invariant quantity in a quasi-local orientation. The

quasi-local gauge-invariant Hamiltonian density is then derived on a hyperboloid
and at the future null infinity �+, giving the formulae of the Bondi mass loss

and the angular momentum loss. Interests could then extend to other fields, e.g.,

scalar fields, matter fields, the Cosmological constant Λ, etc. If, such a definition
still keeps its applicability, together with the quasi-local definition of gravitational

energy [2], the total Hamiltonian can then be written. Since the Hamiltonians
discussed by Hayward [2] and this work are physically well defined, it could be

natural that the resultant total Hamiltonian should satisfy properties such as
the positivity, or the monotonicity, or both, under some physical conditions, e.g.,

dominant energy condition, etc. However, this will require more detailed discus-
sions.
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