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Abstract

We use the simplified “box model” description of particle acceleration in

supernova remnants to investigate the spectral modifications induced by the Bell-
Lucek magnetic field amplification process. In particular we examine whether

such models can naturally account for the shape of the “knee” in the observed
Galactic cosmic ray spectrum.

1. Introduction

Bell & Lucek [1] and Lucek & Bell [3] have presented numerical simula-
tions suggesting that the conventional process of particle acceleration in shocks

bounding young supernova remnants (YSNRs) may result in substantial amplifi-
cation of the highly tangled magnetic field around the shock. Cas A may well be

an example of such a system, because of its unusual strong magnetic field [4]. The
Bell-Lucek hypothesis is one of the few suggestions as to how cosmic ray particles

at and above the “Knee” could be accelerated in relatively conventional Galactic
sources and as such deserves serious consideration.

2. The Bell-Lucek Hypothesis

In the Bell & Lucek process the magnetic field near the shock is highly
distorted by the strong particle pressure gradients and wound up to the point

where approximate equipartition holds. As a result the effective magnetic field
scales with the velocity of the blast wave bounding the YSNR. Using this ampli-

fied field to estimate the particle diffusion in the shock neighbourhood obviously
allows acceleration to higher energies than in the conventional picture. Detailed

estimates and dimensional analysis agree that the maximum particle rigidity is
given, to order of magnitude, by the product of the magnetic field strenght B,

the shock radius Rsnr and the velocity of the shock Vsnr. The increase in cut-off
energy is directly proportional to the field amplification which, because of the
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equipartition argument, is of order of the Alfven Mach Number of the shock Msh.
This can easily be Msh � 103 for a YSNR; acceleration to rigidities of a few

1017 V, rather than the 1014 V normally estimated, is therefore easily possible.

3. The Box Model

In a box model (e.g. Drury et al.[2]), the accelerated particles are assumed

to be uniformly distributed throughout a region extending one diffusion length
each side of the shock, and to be accelerated upwards in momentum space at the

shock itself with an acceleration flux

Φ(p) =
4π

3
p3f(p) (U1 − U2) , (1)

per unit surface area where U1 and U2 are the upstream and downstream velocity
and f(p) is the phase space density of the accelerated particles. If the diffusion

length upstream is L1, and that downstream is L2, then

L1 ≈ κ1(p)

U1

, L2 ≈ κ2(p)

U2

, (2)

where κ1 and κ2 are the upstream and downstream diffusion coefficients, where
we assume Bohm scaling. To a first approximation we assume that both L1 and

L2 are small relative to the radius of the shock and that we can neglect effects
of spherical geometry so that the box volume is simply A(L1 + L2) where A is

the surface area of the shock. The basic “box” model equation is then simply a
conservation equation for the particles in the box; the rate at which the number in

the box changes is given by the divergence of the acceleration flux in momentum
space plus gains from injection and advection and minus advective losses to the

downstream region.

∂

∂t

[
A(L1 + L2)4πp2f(p)

]
+ A

∂Φ

∂p
= AQ(p) + AF1(p) − AF2(p), (3)

where Q(p) is a source function representing injection at the shock (only important

at very low energies), F1 is a flux function representing advection of pre-existing
particles into the system from upstream (normally neglected) and F2 is the flux

of particles advected out of the system and carried away downstream. The only
complication we have to consider is that the box is time-dependent, with flow

speeds, shock area and diffusion lengths all changing. The escaping flux is de-
termined simply by the advection across the downstream edge of the box, that

is

F2(p) = 4πp2f(p)

(
U2 − ∂L2

∂t

)
. (4)



301

Using the above equation plus ignoring the F1(p) term, the box equation becomes:

1

A

∂A

∂t
(L1 + L2) f +

∂L1

∂t
f + (L1 + L2)

∂f

∂t
+ U1f + (U1 − U2)

p

3

∂f

∂p
=

Q

4πp2
. (5)

Partial differential equations of this form always reduce, by the method of char-

acteristics, to the integration of two ordinary equations, one for the characteristic
curve in the (p, t) plane

d p

d t
=

U1 − U2

L1 + L2

p

3
, (6)

and one for the variation of f along this curve

(L1 + L2)
d f

d t
+ f

[
(L1 + L2)

1

A

∂A

∂t
+

∂L1

∂t
+ U1

]
=

Q

4πp2
, (7)

where apart from the injection momentum we can set Q = 0.

4. Spectral Modifications in the Sedov-Taylor solution

In order to derive spectral information out of the box model we rewrite

equation (7), assuming Bohm scaling (κ ∝ p/B) and writing ϑ = L1/(L1 + L2),

as:
d ln f

d t
= −d ln A

d t
+ ϑ

d ln(U1B1)

d t
− 3U1

U1 − U2

d ln p

d t
, (8)

which integrates trivially to relate the value of f at the end of one of the charac-

teristic curves, say at the point (p1, t1), to the value at the start, say at (t0, p0),
as follows;

f(t1, p1)

f(t0, p0)
=

(
A(t1)

A(t0)

)−1 (
U1(t1)B1(t1)

U1(t0)B1(t0)

)ϑ (
p1

p0

)−3U1/(U1−U2)

. (9)

Furthermore we rewrite equation (6), the characteristic curve in the (p, t) plane,

as an equation for kinetic energy, T = c
√

p2 + m2c2 − mc2 ≈ cp, assuming Bohm
diffusion (κ = pc2/3eB) again:

T1 − T0 =
e

α

∫ t1

t0
(U1 − U2) U1B1 dt, (10)

where α is a numerical factor of order 10. Essentially the equation for the curve

relates final energies to starting times: in the case of a a Sedov-Taylor expansion
law for the YSNR (Rsnr ∝ t2/5 , Usnr ∝ t−3/5), T1 � T0 and t0 � t1, this yields:

p1 ∝ T1 ∝ t
−4/5
0 , t0 ∝ p

−5/4
1 . (11)

Using the above relation we can translate the different terms on the RHS of

equation (9) to additional power-law terms in the final momentum p1: the first
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Fig. 1. Example of 2 characteristic curves in the (p, t) plane for a Sedov-Taylor ex-
pansion law and a magnetic field which scales with the shock velocity.

term on the RHS of equation (9) translates to a p−1
1 factor , the second term on

the RHS yields a p
−3ϑ/2
1 factor. The second term includes the result from the

Bell-Lucek hypothesis, i.e. B ∝ Usnr. For the injection momentum we assume

pinj = p0 ∝ U(t0) ∝ p
3/4
1 together with f0 ∝ p−3

0 . Finally assuming a strong shock

which, using the Rankine-Hugoniot conditions for a non-relativistic fluid, yields
U1/U2 = 4 and 3U1/(U1 −U2) = 4, we obtain a scaling-law by rewriting equation

(9), which yields the particle distribution f(p1) at a fixed time t1:

f(p1) ∝ p−3
0 A(t0) [U1(t0)B1(t0)]

−ϑ

(
p1

p0

)−4

∝ p
3/4
1 p−1

1 p
−3ϑ/2
1 p−4

1 , (12)

the slope is steepened from the canonical value of 4 to

4.25 +
3ϑ

2
(13)

in the range where this simple analysis is applicable.

5. Conclusion

We have used a simplified “box model” to describe particle acceleration in

a Sedov-Taylor supernova remnant where the amplified magnetic field is assumed
to scale with the velocity of the blast wave. We have shown that under plausible

assumptions this produces a high-energy tail to the spectrum which is slightly
steeper than 4 with a transition to the usual spectrum in the “knee” region.
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