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Abstract

We discuss a method of coincidence analysis to search for gravitational
waves from inspiraling compact binaries using the data of two laser interferom-

eter gravitational wave detectors. For the purpose to test above methods, we
performed a coincidence analysis by applying these methods to the real data of

TAMA300 and LISM detectors taken during 2001.

1. Introduction

Several laser interferometric gravitational wave detectors, such like TAMA300,

LIGO, GEO600, and VIRGO, have already been constructed or expected to be
finished its construction soon.

TAMA300 is an interferometric gravitational wave detector with 300m
baseline length located at Mitaka campus of the National Astronomical Ob-

servatory of Japan in Tokyo (35.68◦N, 139.54◦E). LISM is an interferometric
gravitational wave detector with 20m baseline length located at Kamioka mine,

Gifu (36.25◦N, 137.18◦E). The TAMA300 and LISM observed during August 1st
and September 20th,2001(JST). This observation is called Data Taking 6 (DT6)

among the TAMA collaboration and the LISM collaboration. The best sensitivity
of the TAMA300 was about 5 × 10−21/

√
Hz around 800Hz. The best sensitivity

of the LISM was about 6.5 × 10−20/
√

Hz around 800Hz.
Although, the sensitivities of TAMA300 and LISM are different for one

order of magnitude, it is a very good opportunity to perform coincidence analysis

since long data are available, and both detector have shown good stability which
allow us to perform such analysis.

2. Matched filtering

We assume that the time sequential data of the detector output s(t) con-

sists of a signal plus noise n(t). To characterize the detector’s noise, we denote
the one-sided power spectrum density of noise by Sn(f). We also assume that the
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wave forms of the signals are predicted theoretically with sufficiently good accu-
racy. We call these waveforms as templates. We adopt templates calculated by

using the post-Newtonian approximation of general relativity [3]. We denote the
parameters distinguishing different templates by θµ. They consist of the coales-

cence time tc, the chirp mass M(≡ Mη3/5) (M = m1 +m2), and non-dimensional
reduced mass η(≡ m1m2/M

2). In this analysis, we did not take into account of

the effects of spin angular momentum. The templates corresponding to a given
set of θµ are represented in Fourier space by two independent templates h̃c and

h̃s as h̃(f) = h̃c(f) cosφc + h̃s(f) sinφc, where φc is the phase of wave [7].

We define a filtered output by ρ(tc, m1, m2, φc) ≡ 2
∫ ∞
−∞

s̃(f)h̃∗(f)
Sh(f)

df = (s|h).

We can analytically take the maximization over φc which gives ρ(tc, m1, m2) =√
(s|hc)2 + (s|hs)2. We can see that ρ has an expectation value

√
2 in the presence

of only Gaussian noise. Thus, the signal-to-noise ratio is given by SNR = ρ/
√

2

Analyzing the real data, we have found that the noise contained a large
amount of non-stationary and non-Gaussian noise [5]. In order to remove the

influence of such noise, we introduce a χ2 test [2]. In this paper, we do not
explain a χ2 test in detail which was explained by the Tanaka and Tagoshi [7].

We searched for the mass parameters, 1.0M� ≤ m1, m2 ≤ 2.0M�, which is
a typical mass region of neutron stars. In the mass parameter space, we prepared

a mesh. The mesh points define templates used for search. The mesh separation
is determined so that the maximum loss of SNR becomes less than 3%. The

typical value of the number of template is about 700 for TAMA300, and 400 for
LISM.

We perform matched filtering search using TAMA300 and LISM data in-
dependently. We obtain ρ and χ2 as functions of masses and the coalescing time

tc. In each small interval of coalescing time ∆tc, we looked for an event which
had the maximum ρ. In the search we report in the following sections, we choose

∆tc = 25msec.

3. A coincidence analysis

Each event in the event list, obtained by the matched filtering search in-

dependently performed for two detectors, depends on tc, M , and η. If they are
real events, they should have the same parameters in both event lists. However,

we may observe real events with different parameters by the effects of detectors’
noise and other effects. Therefore we have to determine the allowed difference of

parameters by taking into account of these effects, in order not to lose real events

by coincidence analysis.
Time selection: First we discuss the coalescence time tc. The distance

between TAMA300 and LISM is 219.92km. Therefore, the maximum delay of the
signal arrival time is ∆tdis = 0.73msec. The effect of detectors’ noise to the esti-
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mated value of tc can be evaluated by the Fisher information matrix [4]. We denote
the 1σ value of error for each detector as ∆tcTAMA,LISM. We can determine allowed

error of tc due to noise by ∆tnoise = σ × ∆tc where ∆tc ≡
√

∆t2cTAMA + ∆t2cLISM.
Finally, we define the allowed difference of tc as follows. If the parameters

tTAMA
c , tLISM

c of the each pair of events satisfy |tTAMA
c − tLISM

c | < ∆tdis + ∆tnoise,
the event is recorded as a candidate event. Note that ,we do not explain in detail

here, we find that if we adopt σ > 3, we will be able to obtain very high detec-
tion probability even in the case of real data. Thus, in the analysis discussed in

the next section, we adopt σ = 3.29 which precise value is adopted because it
corresponds to 0.1% probability to lose real events in Gaussian noise case.

Mass selection: Next we discuss the mass parameters. The error of esti-
mated parameter of the chirp mass and reduced mass due to noise can also be

evaluated by the Fisher matrix. We denote it by ∆Mnoise and ∆ηnoise, which are

evaluated from each detector as ∆Mnoise = σ
√

∆M2
TAMA

+ ∆M2
LISM

, ∆ηnoise =

σ
√

∆η2
TAMA

+ ∆η2
LISM

, where ∆Mi and ∆ηi are 1σ value of error induced by each

detector’s noise. Along with the error due to noise, we also have to take into ac-
count of the effect of the finite mesh size. When the amplitude of the signal is very

large, the errors evaluated by the Fisher matrix becomes smaller than the value of
finite mesh size, since the error of the parameter due to noise is inversely propor-

tional to the value of ρ. We denote the error due to the finite mesh size as ∆Mmesh,
∆ηmesh. We determine the allowed difference of the chirp mass and the reduced

mass so that if the parameters MTAMA, MLISM, ηTAMA and ηLISM of each pair of
events satisfy |MTAMA − MLISM| < max(∆Mnoise, ∆Mmesh), |ηTAMA − ηLISM| <

max(∆ηnoise, ∆ηmesh), the pair of event is adopted as a candidate event.
Amplitude selection: Next we discuss the amplitude. When the sensitivity

of the detectors is different, the signal-to-noise ratio observed by each detector will
be different. Further, since the direction of the arm of each interferometer will be

different in general, the signal-to-noise ratio will be different in each detector even
if the sensitivity is the same. Even in such cases, we can still require consistency

condition to the events and reduce the number of fake events. In our case, the

sensitivity of TAMA300 is typically 15 times better than that of LISM. We can
simply express this effect by δsens. The arm direction of LISM is rotated from that

of TAMA300 for 60 degrees. Real events will be detected with different SNR by
each detector depending on its incident direction and polarization. A simple and

straightforward way to evaluate the allowed difference of amplitude is to perform
simulations. To evaluate only the effect of different arm direction, we assume two

detectors have identical noise power spectrum. We them perform simulations by
generating the Galactic events and by evaluating the difference of ρ which are

detected by each detector. We them determine the value of δsimu such that for
more than 99.9 % of events, we have −δsimu ≤ log

(
ρTAMA

ρLISM

)
≤ δsimu. There is also

an error due to noise in the estimated value of ρ which can also be estimated by
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the Fisher matrix in the same way as tc, M and η. We denote it as δnoise. By
combining the above two effects, we determine the allowed difference of ρTAMA

and ρLISM by δsens − δsimu − δnoise ≤ log
(

ρTAMA

ρLISM

)
≤ δsens + δsimu + δnoise.

4. Application to TAMA300 and LISM data

We performed a matched filtering search using TAMA300 and LISM data

respectively. For the purpose of test analysis, we analysed 26.0 hours of data for
which both detector were locked. As results of matched filtering search, there

were 159,935 events for TAMA300 and 109,609 events for LISM. For these candi-
date events, we performed a coincidence analysis by requiring consistency among

the parameters. The consistency conditions are imposed in the order of the coa-
lescence time selection, the mass selection and the amplitude selection. In Table

1., we show the results of the coincident event search. Significant number of fake
events are removed by taking coincidence.

Table 1. Results of the coincidence analysis. nobs is the number of coincident events.
n̄acc, σ̄acc are the estimated number of accidental coincidence and its standard de-
viation.

nobs n̄acc ± σ̄acc

after time selection 486 581.06 ± 228.15

after time and mass selection 74 86.73 ± 34.25

after time, mass and amplitude selection 63 68.35 ± 33.14

Next, we estimate the number of accidental coincident events by a usual
procedure of shifting one of two sets of data by a time [1]. The number of ac-

cidental coincidence and its standard deviation is shown in Table.1. We can see
that the number of coincident events obtained after each selection is completely

agree with the number of accidental coincidence. Thus, we conclude that we find
no signature of gravitational wave events in the data used here.

Complete results of the analysis, including an upper limit to the event rate
using TAMA300 and LISM data will be reported elsewhere [6].
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